来源:医学统计园
本文共1000字,建议阅读5分钟
本文为你介绍泊松分布的实际应用。
泊松分布,是以18~19 世纪的法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)命名的,他在1838年时发表。这个分布在更早些时候由贝努里家族的一个人描述过,是一种统计与概率学里常见的离散型概率分布。为什么从泊松分布开始讲起呢?
泊松分布简单、容易理解,它的分布律函数只有1个参数:λ。分布律函数或概率密度函数是通过二项分布推导 (当n很大,p很小时,λ=np,二项分布可用泊松分布近似)。
在生物信息学分析中,在对RNAseq数据进行差异表达分析时,需要用到泊松分布模型。
对于以下柏松分布的应用题,我们这里给出解决方案。
泊松分布应用
3. 如果让3名维修工,负责80台设备,设备发生故障而不能及时维修的概率是多少呢?转换成数学语言就是:80台设备,同时坏了3台以上,由于只有3名维修工,在此种情况下,设备发生故障就会得不到及时维修,现在我们来计算在80台设备中3台以上设备同时发生故障的概率。
解答过程:
已知故障发生次数服从泊松分布,即 x~pois(λ),我们先来计算λ:
则3台以上设备同时故障的概率为:
答:3名维修工,负责80台设备(设备已知故障率为0.01),则不能及时维修的概率不到1%。
我们再来最后一套题,来结束泊松分布的介绍吧!
4. 如果要保证300台设备运行中,不及时维修率降低至1%,那么至少需要配备多少名维修工人呢?(300台设备,同时发生x台故障的概率为0.01,计算x,x即为最小配备的维修工人数目)
解答方法1,手动遍历:
结论:300台设备中,同时有8台设备故障的概率低于0.01,故而配备8名及以上维修工即可保证设备不及时维修率低于1%。
解答方法2,R语言遍历:
#在R语言中可以这样尝试遍历:
getLambda<-function(k,threshold){
res=list()
ks=lapply(k,
FUN=function(x){
m=1-dpois(x,3) #设备维修及时率
})
df=data.frame(
k=k,
ks=as.numeric(ks)
)
df1=df[df$ks>threshold,]
if(nrow(df1)>0){
res[['k']]= df1[which.min(df1$k),'k']
res[['Probability']]= df1[which.min(df1$k),'ks']
}else{
res=list()
}
return(res)
}
getLambda(c(1:10),0.99)
$k
8
$Probability
0.991898488205319
结论:8台设备同时发生的故障率低于1%,故而配备8名维修工即可。
泊松分布特点
1. 非0的正整数。
2. 偏态分布,只有一个参数:λ。
3. 均值 = 方差 = λ。
参考文章:
https://baike.baidu.com/item/泊松分布/1442110
https://zhuanlan.zhihu.com/p/493250197?utm_id=0
https://zh.wikipedia.org/wiki/西梅翁·德尼·泊松
编辑:黄继彦