泊松过程2 | 泊松过程扩展

4.5 非时齐次泊松过程

定义:一个计数过程若满足:

  1. N ( 0 ) = 0 N(0)=0 N(0)=0
  2. 它是独立增量过程;
  3. 对充分小的 Δ t > 0 \Delta t>0 Δt>0,有 P ( N ( t + Δ t ) − N ( t ) = 1 ) = λ ( t ) Δ t + o ( Δ t ) P(N(t+\Delta t)-N(t)=1) = \lambda(t) \Delta t + o(\Delta t) P(N(t+Δt)N(t)=1)=λ(t)Δt+o(Δt) P ( N ( t + Δ t ) − N ( t ) ≥ 2 ) = o ( Δ t ) P(N(t+\Delta t)-N(t)\ge 2)=o(\Delta t) P(N(t+Δt)N(t)2)=o(Δt)

则称它为具有强度函数 { λ ( t ) , t ≥ 0 } \{\lambda(t),t\ge0\} {λ(t),t0} 的非时齐次泊松过程。

定理 4.7:若 N ( t ) , t ≥ 0 N(t),t\ge0 N(t),t0 是非时齐次泊松过程,令 m ( t ) = ∫ 0 t λ ( s ) d s m(t)=\int_0^t \lambda (s)ds m(t)=0tλ(s)ds,则对 ∀ s , t ≥ 0 \forall s,t\ge0 s,t0,有
P ( N ( t + s ) − N ( s ) = n ) = ( m ( s + t ) − m ( s ) ) n n ! exp ⁡ ( − ( m ( s + t ) − m ( s ) ) ) ,   n ≥ 0 P(N(t+s)-N(s)=n) = \frac{(m(s+t)-m(s))^n}{n!}\exp(-(m(s+t)-m(s))), ~ n\ge0 P(N(t+s)N(s)=n)=n!(m(s+t)m(s))nexp((m(s+t)m(s))), n0
上述定理最主要特点在于 E [ N ( t + s ) − N ( s ) ] = m ( s + t ) − m ( s ) = ∫ s s + t λ ( s ) d s {\mathbb E}[N(t+s)-N(s)] = m(s+t)-m(s) = \int_s^{s+t} \lambda (s)ds E[N(t+s)N(s)]=m(s+t)m(s)=ss+tλ(s)ds,相应的方差为 D [ N ( s + t ) − N ( s ) ] = m ( s + t ) − m ( s ) D_{[N(s+t)-N(s)]}=m(s+t)-m(s) D[N(s+t)N(s)]=m(s+t)m(s)

4.6 复合泊松过程

4.6.1 定义

定义:设 { Y i , i ≥ 1 } \{Y_i,i\ge1\} {Yi,i1} 是独立同分布的随机变量序列, { N ( t ) , t ≥ 0 } \{N(t),t\ge0\} {N(t),t0} 为泊松过程,且与 { Y i , i ≥ 1 } \{Y_i,i\ge1\} {Yi,i1} 独立,记 X ( t ) = ∑ i = 1 N ( t ) Y i X(t)=\sum_{i=1}^{N(t)} Y_i X(t)=i=1N(t)Yi 称为复合泊松过程。

为求 X ( t ) X(t) X(t) 的矩,先求它的矩母函数
ϕ t ( u ) = E [ exp ⁡ ( u X ( t ) ) ] = ∑ n = 0 ∞ P ( N ( t ) = n ) E [ exp ⁡ ( u X ( t ) ) ∣ N ( t ) = n ] = exp ⁡ ( λ t ( ϕ Y ( u ) − 1 ) ) \begin{aligned} \phi_t(u) &= {\mathbb E}[\exp(u X(t))] \\ &= \sum_{n=0}^\infty P(N(t)=n){\mathbb E}[\exp(uX(t)) | N(t)=n] \\ &= \exp(\lambda t(\phi_Y(u)-1)) \end{aligned} ϕt(u)=E[exp(uX(t))]=n=0P(N(t)=n)E[exp(uX(t))N(t)=n]=exp(λt(ϕY(u)1))
其中 ϕ Y ( u ) = E [ exp ⁡ ( u Y ) ] \phi_Y(u)={\mathbb E}[\exp(uY)] ϕY(u)=E[exp(uY)] Y Y Y 的矩母函数。上式在 u = 0 u=0 u=0 处求导得到 E [ X ( t ) ] = ϕ t ′ ( 0 ) = λ t E Y {\mathbb E}[X(t)] = \phi_t'(0) = \lambda t {\mathbb E}Y E[X(t)]=ϕt(0)=λtEY D [ X ( t ) ] = ϕ t ′ ′ ( 0 ) − ( ϕ t ′ ( 0 ) ) 2 = λ t E Y 2 {D}[X(t)] = \phi_t''(0)-(\phi_t'(0))^2 = \lambda t{\mathbb E}Y^2 D[X(t)]=ϕt(0)(ϕt(0))2=λtEY2。若 Y i Y_i Yi 取正整数的随机变量,则称 { X ( t ) , t ≥ 0 } \{X(t),t\ge0\} {X(t),t0} 为平稳无后效流。

4.6.2 复合泊松恒等式

定理 4.8:设 Y = ∑ i = 1 N X i Y=\sum_{i=1}^N X_i Y=i=1NXi 是复合泊松随机变量,其中随机变量 N N N 服从均值为 λ \lambda λ 的泊松分布,随机变量序列 { X k , k = 1 , 2 , . . . } \{X_k,k=1,2,...\} {Xk,k=1,2,...} 是独立同分布的,且与 N N N 统计独立。设 X k , ( k = 1 , 2 , . . . ) X_k,(k=1,2,...) Xk,(k=1,2,...) 的分布函数为 F ( x ) F(x) F(x),则对任意的有界函数 h ( x ) h(x) h(x) E [ Y h ( Y ) ] = λ E [ X h ( Y + X ) ] {\mathbb E}[Y h(Y)] = \lambda {\mathbb E}[X h(Y+X)] E[Yh(Y)]=λE[Xh(Y+X)],其中随机变量 X X X N N N 统计独立,它的分布函数也为 F ( x ) F(x) F(x)

证明:略。

推论 4.8.1:对任何正整数 n n n E [ Y n ] = λ ∑ k = 0 n − 1 ( n − 1 k ) E [ Y k ] E [ X n − k ] {\mathbb E}[Y^n] = \lambda \sum_{k=0}^{n-1} \tbinom{n-1}{k} {\mathbb E}[Y^k]{\mathbb E}[X^{n-k}] E[Yn]=λk=0n1(kn1)E[Yk]E[Xnk]

证明:令 h ( x ) = x n − 1 h(x)=x^{n-1} h(x)=xn1 即可得证。

利用此推论可以得到:
E Y = λ E X E Y 2 = λ E X 2 + λ 2 ( E X ) 2 E [ Y − E Y ] 2 = λ E X 2 E [ Y − E Y ] 3 = λ E X 3 \begin{aligned} {\mathbb E}Y &= \lambda{\mathbb E}X \\ {\mathbb E}Y^2 &= \lambda{\mathbb E}X^2 + \lambda^2({\mathbb E}X)^2 \\ {\mathbb E}[Y-{\mathbb E}Y]^2 &= \lambda{\mathbb E}X^2 \\ {\mathbb E}[Y-{\mathbb E}Y]^3 &= \lambda{\mathbb E}X^3 \end{aligned} EYEY2E[YEY]2E[YEY]3=λEX=λEX2+λ2(EX)2=λEX2=λEX3

4.7 条件泊松过程

定义:设 Λ \Lambda Λ 是一个正的随机变量,分布函数为 G ( x ) , x ≥ 0 G(x),x\ge0 G(x),x0,设 { N ( t ) , t ≥ 0 } \{N(t),t\ge0\} {N(t),t0} 是一个计数过程,且给定 Λ = λ \Lambda=\lambda Λ=λ 的条件下, { N ( t ) , t ≥ 0 } \{N(t),t\ge0\} {N(t),t0} 是一个泊松过程,即 ∀ s , t ≥ 0 , n ∈ N , λ ≥ 0 \forall s,t\ge0,n\in \mathbb{N},\lambda\ge0 s,t0,nN,λ0,有
P ( N ( s + t ) − N ( s ) = n ∣ Λ = λ ) = ( λ t ) n n ! e − λ t P(N(s+t)-N(s)=n | \Lambda=\lambda) = \frac{(\lambda t)^n}{n!} e^{-\lambda t} P(N(s+t)N(s)=nΛ=λ)=n!(λt)neλt
{ N ( t ) , t ≥ 0 } \{N(t),t\ge0\} {N(t),t0} 是条件泊松过程。

Remark:这里 { N ( t ) , t ≥ 0 } \{N(t),t\ge0\} {N(t),t0} 本身并不是独立增量过程,由全概率公式得到
P ( N ( s + t ) − N ( s ) = n ) = ∫ 0 ∞ ( λ t ) n n ! e − λ t d G ( λ ) P(N(s+t)-N(s)=n) = \int_0^{\infty} \frac{(\lambda t)^n}{n!} e^{-\lambda t} dG(\lambda) P(N(s+t)N(s)=n)=0n!(λt)neλtdG(λ)
定理 4.9:设 { N ( t ) , t ≥ 0 } \{N(t),t\ge0\} {N(t),t0} 是上述条件泊松过程,则

  1. E [ N ( s + t ) − N ( t ) ] = s E Λ {\mathbb E}[N(s+t)-N(t)] = s{\mathbb E}\Lambda E[N(s+t)N(t)]=sEΛ
  2. D [ N ( s + t ) − N ( t ) ] = s E Λ + s 2 D Λ D[N(s+t)-N(t)] = s{\mathbb E}\Lambda + s^2 D\Lambda D[N(s+t)N(t)]=sEΛ+s2DΛ

证明:略。

4.8 更新过程

4.8.1 更新过程的定义

定义:设 { X k , k ≥ 1 } \{X_k,k\ge1\} {Xk,k1} 独立同分布的非负随机变量,分布函数为 F ( x ) F(x) F(x),且 F ( 0 ) < 1 F(0)<1 F(0)<1。令 S 0 = 0 , S n = ∑ k = 1 n X k S_0=0, S_n=\sum_{k=1}^n X_k S0=0,Sn=k=1nXk,对 ∀ t ≥ 0 \forall t\ge0 t0,记 N ( t ) = sup ⁡ { n : S n ≤ t } N(t)=\sup\{n:S_n\le t\} N(t)=sup{n:Snt} 或者 N ( t ) = ∑ n = 1 ∞ I { S n ≤ t } N(t)=\sum_{n=1}^\infty I_{\{S_n\le t\}} N(t)=n=1I{Snt},称 { N ( t ) , t ≥ 0 } \{N(t),t\ge0\} {N(t),t0} 为更新过程。

F n ( x ) F_n(x) Fn(x) S n S_n Sn 的分布函数,易知 F 1 ( x ) = F ( x ) F_1(x)=F(x) F1(x)=F(x) F n ( x ) = ∫ 0 x F n − 1 ( x − u ) d F ( u ) , ( n ≥ 2 ) F_n(x)=\int_0^x F_{n-1}(x-u)dF(u),(n\ge2) Fn(x)=0xFn1(xu)dF(u),(n2),即 F n ( x ) F_n(x) Fn(x) F ( x ) F(x) F(x) n n n 重卷积。记 m ( t ) = E [ N ( t ) ] m(t)={\mathbb E}[N(t)] m(t)=E[N(t)],称 m ( t ) m(t) m(t) 为更新函数。

类似的,分布密度函数同样是卷积的形式 f n ( x ) = ∫ 0 x f n − 1 ( x − u ) f ( u ) d u f_n(x) = \int_0^x f_{n-1}(x-u)f(u)du fn(x)=0xfn1(xu)f(u)du

定理 4.10 ∀ t ≥ 0 \forall t\ge0 t0 m ( t ) = ∑ n = 1 ∞ F n ( t ) m(t)=\sum_{n=1}^\infty F_n(t) m(t)=n=1Fn(t)

证明: m ( t ) = ∑ n n P ( N ( t ) = n ) = ∑ n P ( N ( t ) ≥ n ) = ∑ n P ( S n ≤ t ) = ∑ n F n ( t ) m(t)=\sum_n nP(N(t)=n) = \sum_n P(N(t)\ge n) = \sum_n P(S_n\le t) = \sum_n F_n(t) m(t)=nnP(N(t)=n)=nP(N(t)n)=nP(Snt)=nFn(t).

栗子 4.3 F ( x ) F(x) F(x) 是指数分布函数,相应的概率密度函数为 f ( x ) = λ e − λ x , x ≥ 0 , λ > 0 f(x)=\lambda e^{-\lambda x},x\ge0,\lambda > 0 f(x)=λeλx,x0,λ>0,那么由此可以计算 f n ( x ) = λ ( λ x ) n − 1 ( n − 1 ) ! e − λ x f_n(x)=\frac{\lambda (\lambda x)^{n-1}}{(n-1)!} e^{-\lambda x} fn(x)=(n1)!λ(λx)n1eλx,然后计算得到 m ( t ) = λ t m(t) = \lambda t m(t)=λt,这与之前泊松过程的结论是一致的。

栗子 4.4:设 F ( x ) F(x) F(x) 是 Gamma 分布函数,相应的额概率密度函数为 f ( x ) = x e − x f(x)=xe^{-x} f(x)=xex,其 Laplace 变换 f ^ ( s ) = 1 / ( 1 + s ) 2 \hat{f}(s) = 1/(1+s)^2 f^(s)=1/(1+s)2,利用 Laplace 变换的性质知道 f n ^ ( s ) = 1 / ( 1 + s ) 2 n \hat{f_n}(s)=1/(1+s)^{2n} fn^(s)=1/(1+s)2n,反变换即可得到 f n ( x ) f_n(x) fn(x),然后再根据定理 4.10计算得到 m ( t ) = − 1 4 + t 2 + e − 2 t 4 m(t)=-\frac{1}{4} + \frac{t}{2} + \frac{e^{-2t}}{4} m(t)=41+2t+4e2t

4.8.2 更新过程的剩余寿命与年龄

N ( t ) N(t) N(t) 表示 [ 0 , t ] [0,t] [0,t] 上事件发生的个数, S n S_n Sn 表示第 n n n 个事件发生的时刻,那么 S N ( t ) S_{N(t)} SN(t) 表示在 t t t 之前最后一个事件发生的时刻, S N ( t ) + 1 S_{N(t)+1} SN(t)+1 表示 t t t 时刻后首次事件发生的时刻。令 W ( t ) = S N ( t ) + 1 − t , V ( t ) = t − S N ( t ) W(t)=S_{N(t)+1}-t, V(t)=t-S_{N(t)} W(t)=SN(t)+1t,V(t)=tSN(t),则 W ( t ) W(t) W(t) 表示 t t t 时刻后直到首次事件发生的剩余时间。

定理 4.11:若非负随机变量 { X n , n ≥ 1 } \{X_n,n\ge1\} {Xn,n1} 独立同分布,分布函数为 F ( x ) F(x) F(x),则对 ∀ x , t ≥ 0 \forall x,t\ge0 x,t0,有

  1. P ( W ( t ) > x ) = 1 − F ( x + t ) + ∫ 0 t P ( W ( t − u ) > x ) d F ( u ) P(W(t) > x)=1 - F(x+t) + \int_0^t P(W(t-u) > x) dF(u) P(W(t)>x)=1F(x+t)+0tP(W(tu)>x)dF(u)
  2. P ( V ( t ) ≤ x ) = ( 1 − F ( t ) ) I [ 0 , x ] ( t ) + ∫ 0 t P ( V ( t − y ) ≤ x ) d F ( y ) P(V(t) \le x) = (1-F(t)) I_{[0,x]}(t) + \int_0^t P(V(t-y) \le x) dF(y) P(V(t)x)=(1F(t))I[0,x](t)+0tP(V(ty)x)dF(y)

证明:略。

定理 4.12:设 { N ( t ) , t ≥ 0 } \{N(t),t\ge0\} {N(t),t0} 是参数为 λ \lambda λ 的泊松过程,则

  1. W ( t ) W(t) W(t) { X n , n ≥ 1 } \{X_n,n\ge1\} {Xn,n1} 同分布,即 P ( W ( t ) ≤ x ) = 1 − exp ⁡ ( − λ x ) , x ≥ 0 P(W(t)\le x)=1-\exp(-\lambda x),x\ge0 P(W(t)x)=1exp(λx),x0
  2. V ( t ) V(t) V(t) 是截尾的指数分布,即 P ( V ( t ) ≤ x ) = { 1 − exp ⁡ ( − λ x ) 0 ≤ x < t 1 x ≥ t P(V(t)\le x)=\begin{cases} 1-\exp(-\lambda x) & 0\le x < t \\ 1 & x\ge t \end{cases} P(V(t)x)={1exp(λx)10x<txt

证明:略。

4.10 瓦尔德等式

定义:设 { X n , n ≥ 1 } \{X_n,n\ge1\} {Xn,n1} 为随机序列, T T T 为非负整数随机变量,若对任一 n ∈ N n\in{\mathbb N} nN 事件 { T = n } \{T=n\} {T=n} 仅依赖于 { X 1 , . . . , X n } \{X_1,...,X_n\} {X1,...,Xn},而与 X n + 1 , X n + 2 , . . . X_{n+1},X_{n+2},... Xn+1,Xn+2,... 独立,则称 T T T 关于 { X n , n ≥ 1 } \{X_n,n\ge1\} {Xn,n1}停时,或称马尔可夫时。

定理 4.13(Wald):设 { X n , n ≥ 1 } \{X_n,n\ge1\} {Xn,n1} 独立同分布, μ = E X n < ∞ \mu={\mathbb E}X_n < \infty μ=EXn< X n X_n Xn X X X 同分布, τ \tau τ 关于 { X n , n ≥ 1 } \{X_n,n\ge1\} {Xn,n1} 是停时,且 E τ < ∞ {\mathbb E}\tau < \infty Eτ<,则 E [ ∑ n = 1 τ X n ] = E X E τ {\mathbb E}[\sum_{n=1}^\tau X_n] = {\mathbb E}X {\mathbb E}\tau E[n=1τXn]=EXEτ

证明:略。

4.11 泊松过程与鞅

线性方法构造的鞅, Y ( t ) = N ( t ) − λ t , U ( t ) = Y 2 ( t ) − λ t Y(t)=N(t)-\lambda t, U(t)=Y^2(t)-\lambda t Y(t)=N(t)λt,U(t)=Y2(t)λt

基于特征函数构造的鞅 V ( t ) = exp ⁡ ( − θ N ( t ) + λ t ( 1 − e − θ ) ) V(t)=\exp(-\theta N(t) + \lambda t(1-e^{-\theta})) V(t)=exp(θN(t)+λt(1eθ))

最后给我的博客打个广告,欢迎光临
https://glooow1024.github.io/
https://glooow.gitee.io/

前面的一些博客链接如下
泛函分析专栏
高等数值分析专栏
随机过程专栏
随机过程1 绪论
随机过程2 平稳过程与二阶矩
离散鞅论1 | 基本概念
离散鞅论2 | 停时与停时定理
离散鞅论3 | 鞅论应用
泊松过程1 | 定义与基本性质
泊松过程2 | 泊松过程扩展
布朗运动 1 | 基本概念与性质
布朗运动 2 | 布朗运动的推广
马尔可夫过程1 | 基本概念
马尔可夫过程2 | 状态空间
连续参数马尔可夫链

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值