可信赖图神经网络综述!图的因果学习!

91ddfc0baa202cd12f1f4ce23143e26c.png

本文约9000字,建议阅读10+分钟
本文从因果角度分析了GNN的可靠性风险,并介绍了六组技术以深入了解潜在的因果机制并实现可靠性。

1 介绍

本文综述了图神经网络(GNN)在图挖掘应用中的最新进展,并强调了其在低维表示中保留丰富知识的能力。然而,GNN在可靠性方面存在挑战,包括OOD泛化能力、公平性和可解释性。为了解决这些问题,研究人员开始将因果学习纳入可信赖图神经网络(TGNN)的开发中。

本文从因果角度分析了GNN的可靠性风险,并介绍了六组技术以深入了解潜在的因果机制并实现可靠性。此外,本文还整理了开源基准、数据合成策略、常用的评估指标以及可用的开源代码和包,以帮助研究人员在开发TGNN时更容易地探索因果思想,并在各种下游应用中进行实际实施。

2 基础知识

2.1 图神经网络

图神经网络在处理图结构数据时取得了最先进的性能,其关键思想是将节点映射到低维表示中,同时保留结构性和上下文知识。现有的GNN可以被划分为基于空间和基于谱的类别。基于空间的GNN通过迭代转换和聚合节点特征和相邻信息来获得节点表示。基于谱图的GNNs将节点表示矩阵H∈R|V|×d视为d维图信号的集合,并设法在谱域中调节它们的频率。一旦获得节点表示,它们可以通过结合一个预测器w(·),例如多层感知器(MLP),将表示映射到标签空间中,从而用于下游任务。图神经网络的下游任务可以大致分为节点级别、边级别和图级别。整个模型可以以端到端的方式使用下游标签进行训练,或者以预训练微调的方式进行训练。与网络嵌入等其他图学习方法相比,在特定信号的监督下,GNN可以保留上下文信息和结构信息,这些信息在解决下游任务时通常更有效。

2.2 因果学习

因果学习研究变量间的因果关系,旨在实现稳健预测和明智决策。其基本任务包括:因果推理、因果发现和因果表示学习。本节首先介绍了两个基石因果学习框架:潜在结果框架和结构因果模型,并阐述了它们如何一致地制定基本因果学习任务。此外,还介绍了因果学习中因果识别的一些基础知识。

2.2.1 因果学习框架

潜在结果框架(POF)。潜在结果框架通过定义潜在结果来描述因果关系。POF 假设个体的潜在结果取决于所接受的处理,并且不同处理下的潜在结果之间是相互独立的。POF 的核心概念是潜在结果,即个体在接受不同处理下的可能结果。POF 假设个体的潜在结果满足 SUTVA 和一致性假设,即个体的潜在结果不受其他个体处理变化的影响,并且个体在接受不同处理下的潜在结果之间是相互独立的。

结构因果模型 (SCM) 。结构因果模型则通过描述系统的潜在因果机制来描述因果关系。SCM 由一组变量、一组外生变量、一组函数和一个联合分布组成。SCM 中的变量分为内生变量和外生变量,内生变量是有因果关系的变量,外生变量是没有因果关系的变量。函数用于计算内生变量的值,联合分布用于描述外生变量的分布。SCM 可以用有向无环图(DAG)来表示,DAG 中的节点表示变量,边表示因果关系。SCM 可以用于估计干预分布,即对某个变量进行干预后,其他变量的分布情况。

2.2.2 基本因果学习任务的制定

因果推理是量化变量间因果关系的方法,有助于提高决策的可靠性。个体治疗效果可以反映因果关系,但观察到事实结果和反事实结果通常不可能。因此,我们需要从群体水平上近似量化因果关系,例如估计平均治疗效果或条件平均治疗效果。在SCM框架下,个体级别的因果推理关注反事实分布,群体级别的任务涉及估计不同治疗水平的P(y|do(t)),从而计算ATE和CATE。此外,因果发现是从观测数据中恢复由SCMM生成的因果图,而因果表征学习旨在恢复潜在变量及其因果关系。例如,在低级视觉图像中,通过学习摆动、光源和阴影的因果表示,可以估计操纵摆动角度后的阴影的反事实情况。

2.2.3 因果关系数量的识别

在因果学习中,识别因果关系数量是关键,这有助于理解变量间的因果关系,从而更好地决策。识别方法包括潜在结果框架和结构因果模型。潜在结果框架通过假设反事实结果描述个体在不同处理下的潜在结果,结构因果模型则描述个体间的因果关系。结构因果模型中的识别方法主要有后门调整和因果发现。后门调整通过消除后门路径来消除虚假相关性,因果发现则通过寻找变量间的因果关系来识别因果关系数量。

3 GNN的可信度风险:因果视角分析

我们在此部分中,针对图神经网络的三个可信风险因素:泛化能力、公平性和可解释性,进行了因果分析。首先,我们给出了这三个因素的正式定义。随后,我们深入探讨了主流图神经网络面临这些风险的原因。

3.1 GNN中的分布外泛化

在图神经网络中,分布外泛化问题是指模型在训练集和测试集分布不同的情况下,泛化能力下降的问题。在图数据中,分布偏移可能发生在特征级别和拓扑级别。特征级别的分布偏移包括节点特征和边特征的分布变化,而拓扑级别的分布偏移包括节点表示和图结构的变化。在图生成过程中,因果图组件和标签之间的虚假相关性可能导致分布偏移。

为了解决分布外泛化问题,可以采用因果学习框架来识别和消除虚假相关性。具体来说,可以通过因果图生成过程来识别和消除虚假相关性,从而提高模型的泛化能力。此外,还可以通过因果推理和因果表示学习来提高模型的泛化能力。

3.2 GNN的公平性

在图神经网络中,公平性是指模型在预测时避免对某些具有敏感属性的人群进行歧视。然而,传统的基于相关性的图公平性度量方法可能会增加歧视,因为它们没有考虑到导致不公平性的潜在因果机制。为了解决这个问题,本文提出了基于因果关系的图公平性度量方法,即图反事实公平性(Graph Counterfactual Fairness,GCF)。GCF要求模型在给定节点特征和敏感属性下,输出节点表示的概率分布与敏感属性无关。

GCF的提出为图神经网络的公平性提供了更高的标准,要求模型理解图中的特征和因果关系,确保敏感属性不会影响输出节点表示。然而,GCF的实现仍然面临挑战,因为现有的图神经网络模型可能无法捕捉到导致不公平性的因果机制。因此,未来的研究需要关注如何设计能够捕捉因果关系的图神经网络模型,以实现公平性。

3.3 GNN的可解释性

虽然GNN比其它类型的深度神经网络更具可解释性,但由于特征映射器的不透明性,它们仍然无法避免黑盒性质。最近的努力试图通过生成后验解释或提高其固有的可解释性来减轻GNN的黑盒性质。

  • 后验可解释性:指的是能够识别一组人类可理解的图形组件(例如节点、边或子图),这些组件对目标GNN的给定预测有贡献。

  • 固有可解释性:指的是可以理解的原理。

然而,这些研究缺乏可靠性,因为它们可能无法区分因果关系和虚假相关性。主流的后验解释方法通常学习测量不同输入图形组件对模型预测的重要性得分,并将模型的预测归因于具有最高重要性得分的图形组件。然而,生成的重要性得分可能无法测量输入图形组件的因果效应。更常见的是,这些方法只能捕捉到虚假相关性,而不是因果关系。因此,需要一种能够捕捉因果关系的可解释性方法,以便GNN能够基于因果机制而不是表面相关性进行预测。

8fbe2efe7ab40c1669396c95383b2607.png

图1 展示了在图或节点级别任务中,描述图生成过程的两个因果图。G表示目标图或目标节点周围的邻近子图,Y表示标签或模型预测,C表示(隐藏)混淆因素。黑色实线箭头表示因果关系,红色虚线箭头表示伪相关性。图(a)有助于揭示GNNs较差的OOD泛化性和可解释性的原因,其中V和I分别表示生成子图的变体和不变的潜在因素。图(b)有助于揭示图不公平性的起源,其中S和X分别表示敏感和不敏感的子图属性。

4 因果启发的图神经网络(CIGNNs)

因果启发的图神经网络是一种基于因果关系的学习方法,旨在通过分析因果关系来提高神经网络的性能和泛化能力。这种网络通常采用深度学习技术,通过学习因果关系来优化网络结构和参数,从而更好地适应复杂的数据和任务。

因果启发的神经网络在许多领域都有应用,如自然语言处理、计算机视觉、强化学习等。它们可以用于解决一些传统方法难以处理的问题,如因果推理、因果预测等。通过分析因果关系,因果启发的神经网络能够更好地理解数据和任务,从而更好地适应和解决各种问题。

理解底层数据的因果关系对于开发可靠的GNN至关重要。本节对现有的CIGNNs进行系统综述,并使用一个分类系统来突出它们不同的因果学习能力。图2展示了根据其增强的因果学习能力的现有CIGNNs的详细分类,表1还总结了所审查工作的关键特征。

5837fb64ecc00d60320474e288728c8f.png

图2 根据其增强的因果学习能力的现有CIGNNs的详细分类

表1 已审查的CIGNNs的总结

fb0427bb27bba2b4dd4e4537fa9bb750.png

4.1 因果任务导向型分类法

现有的CIGNNs通过给GNN配备因果学习功能来提高可信度,主要分为因果推理和因果表示学习两类。因果推理旨在估计不同图组件之间的因果效应,包括标签和模型预测等,利用这种因果知识提高图神经网络的可信度。因果表示学习则探索图神经网络直接从原始图数据中学习因果表示的能力,将因果学习过程无缝地集成到图神经网络的标准问题解决流程中。

4.2 增强图的因果推理能力

增强图神经网络进行因果推理的能力,旨在通过量化图组件之间的因果关系以及感兴趣的结果(例如标签和模型预测)来增强其可信度。这里我们重点关注图数据上的三个值得注意的因果推理问题,包括群体层面的因果效应估计、个体层面的因果效应估计和反事实解释生成。

4.2.1 群体层面的因果效应估计

在图神经网络中,群体层面的因果效应估计是一种重要的因果推理方法,旨在量化不同图组件与目标变量之间的关系。群体层面的因果效应估计可以帮助提高图神经网络的OOD泛化性和可解释性。在OOD泛化性方面,通过学习不同图特征对目标标签的因果效应,图神经网络可以识别并依赖那些具有强因果效应的图特征来实现泛化性能。在可解释性方面,对模型预测的因果效应的准确估计有助于更可靠的归因。

群体层面的因果效应估计面临的主要挑战是如何控制治疗和结果变量之间的混淆因素。由于图数据的复杂性,传统的后门调整方法可能不切实际。为了解决这个问题,研究者们提出了三种方法来规避上述挑战。其中,前两种方法采用了经典的因果识别策略,第三种方法则采用了生成模型。

4.2.1 个体层面的因果效应估计

个体层面的因果效应估计是一种因果推理方法,旨在推断每个节点或图实例的潜在结果。这种方法可以帮助消除虚假的可解释性,并且主要关注推断每个节点的反事实结果。个体层面的因果效应估计可以通过三种方法实现:干预、匹配和生成模型。

干预可以在不涉及伦理或成本问题的情况下对图数据进行反复干预,消除虚假的可解释性。匹配是一种基于相似性的方法,通过匹配具有相似特征的节点来消除虚假的可解释性。生成模型是一种基于深度学习的方法,通过生成反事实结果来推断每个节点的潜在结果。这三种方法都可以推断每个节点的反事实结果,从而消除虚假的可解释性。前两种方法是经典的因果技术,最后一种方法是基于深度学习的方法。

4.2.3 图反事实解释生成(GCE)

图反事实解释生成是一种生成反事实结果的方法,旨在通过生成反事实结果来推断每个节点的潜在结果。这种方法可以消除虚假的可解释性,因为它可以推断每个节点的反事实结果。GCE回答了“改变模型预测所需的最小输入图样本的扰动是什么?”的问题,揭示了必要的特征,并为用户提供了有价值的建议。GCE补充了事实解释,从模型导向和用户导向两个方面衡量了图特征的贡献。GCE可以提高 GNN的事后可解释性,并在许多现实世界场景中提供有价值的建议。

4.3 增强图的因果表示学习(CRL)

将CRL整合到图神经网络中具有巨大潜力。图神经网络捕捉非线性关系的能力有利于潜变量表示学习,而CRL则能从精细的图组件中抽象出对感兴趣的结果具有不变因果效应的高层次因果变量。这些因果表示可以用于进行一般化的预测或生成忠实的图神经网络解释。此外,与CRL结合的图神经网络自然具有更好的内在可解释性。

在本节中,我们首先介绍不变性学习的基础知识,它在当前图CRL文献中起着关键作用。然后详细说明现有工作如何通过监督或自我监督学习赋予图神经网络学习因果表示的能力。

4.3.1 不变性学习的基础知识

不变性学习是一种重要的学习方法,旨在学习到与数据环境无关的因果关系,其基本假设是因果机制的不变性,目标是提高模型的可信度和可解释性。我们提出了一个重要假设,即因果机制是恒定的,即目标变量Y与其直接因果父母之间的因果关系是恒定的。然而,不变因果预测(ICP)在原始特征和目标标签之间的因果关系方面是有限的。不变风险最小化(IRM)将ICP扩展到处理潜在的因果机制,并在帮助表示学习的帮助下,激发了一系列不变学习方法。IRM的不变性假设是存在一个数据表示Φ(X),使得∀e,e'∈Etr,E[Y|Φ(Xe)]=E[Y|Φ(Xe')]。为了找到这样的Φ(X),IRM基于事实,即地标的Φ(X)对应于在Etr上最优的不变预测器w(·),基于这个事实,IRM基于以下优化问题:最小化Φ(X)和w的约束问题中,环境e∈Etr中的经验损失L e(·,·)。我们在图CRL中采用了一些已经采用的有代表性的工作,如表2。

表2 三种常用的不变正则化项

4c92727b1a5d5270c8053490ccf2dc3f.png

4.3.2 有监督的因果表示学习

在有监督的因果表示学习中,我们利用下游任务的监督信号来指导GNN的学习过程,并塑造表示空间。IRM是一种从多个数据环境中学习的范例,随着其趋势的兴起,许多研究者设计了先进的模型,从下游任务中获取有监督的信号,主要关注学习不变的图表示。在此背景下,我们重点介绍了两个代表性的工作。

组不变学习旨在将不变学习扩展到更实际的场景中,其中明确的标签在不同的环境之间不可用。关键思想是利用从输入图(s)中解缠的变表示来推断不同的训练环境,从而满足不变学习的要求。DIR[23]实现了组不变学习的想法,以改进图形级别的任务。EERM[52]首次尝试在节点任务中进行组不变学习。

FLOOD[77]认为基于GNN的不变编码器应该能够很好地泛化分布转移,并且应该适应测试数据,而不是在训练和测试阶段保持不变。GIL [78] 有效地采用了异构风险最小化(HRM) [121],这是一种新型的组不变学习方法,从理论上描述了环境的作用,用于在图级任务中学习不变的因果表示。BA-GNN [79] 采用类似的想法来增强节点级别的任务。INL[80]进一步用基于对比度模块性的图聚类策略替代K-means以增强环境推断模块。

联合不变性与可变性学习是一种通过更直接的监督目标来分离不变性变量I和可变性变量的方法。CAL设计了一个基于注意力的解耦模块,生成I和V的表示hI和hV,然后分别传递到不变性预测器和变异性预测器,通过监督分类损失引导hI捕获不变因果信息,通过推动wV(hV)来近似均匀分布来引导hV捕获非因果变异模式。CMRL采用相同的思想来增强GNNs在识别影响分子之间关系的子结构方面的能力。Orphicx采用这种思想来学习具有最大因果信息流到模型预测ˆY的因果表示I。CIE将CAL中的变异表示监督损失替换为促进从输入图中解耦的hI和hV之间的独立性。DisC执行类似的解耦策略来生成hI和hV,并采用不变预测器和变体预测器来促进hI和hV的学习。

4.3.3 自我监督的因果表示学习

自我监督学习通过无监督的监督信号指导表示学习,以保留因果关系。GCL方法采用基于互信息的相似度测量,如InfoNCE和SimCLR,来促进图神经网络学习判别性表示。RGCL设计了一种考虑不变性的图增强方法,以激发GCL在图上学习不变因果表示的潜力。CIGA从理论上分析了在不同数据环境中比较不变表示的重要性,以消除在具有某些SCMs的图分布转移下估计不变表示中的变异信息。GALA假设对于任何变体图组件V,存在两个数据环境e1、e2∈Etr,使得P e1(Y|V)=P e2(Y|V),但P e1(Y|I)=P e2(Y|I)。然后采用基于模型预测正确性的偏差模型训练来基于模型预测的偏差来找到这些数据环境。IMoLD反事实地扰动从输入图中分离出来的变异因子V与其他图中的变异因子对其他图中的变异因子进行反事实增强,创建一个共享相同不变因子I的视图集合,它们之间的相似性最大化以促进I和V的学习。CAF针对每个节点利用敏感属性感知的反事实增强,这增强了GNN的GCF。

5 数据集

为了确保验证的令人信服性,需要了解数据集的详细信息并选择表现出多样性的适当数据集。不同应用中的图生成过程可能导致不同类型的分布偏移、不公平性或模型可解释性问题,因此数据集的多样性至关重要。接下来,将介绍已经采用用于评估可信度的三个方面的现有真实世界和合成数据集。

5.1 用于评估OOD可概括性的数据集

5.1.1 基准数据集

为了评估GNN在节点级和图级的性能,研究者使用了各种现实世界和合成图数据集。这些数据集来源广泛,涵盖了特征和结构的多样性。Li等人提供了数据集的总结和关键统计数据。Gui和Li等人创建了一个高级的图OOD基准,GOOD,用于比较不同图OOD方法。它包括6个图级和5个节点级数据集,通过无偏移、协变量偏移和概念偏移划分生成。Ji和Zhang等人整理了一个与生物化学知识对齐的数据环境分组的AI辅助药物发现基准,作为评估图OOD泛化方法的试验台。Wang和Chen等人开发了一个OOD动力学属性预测基准,该基准在多个维度上表现出分布偏移。

5.1.2 专门化数据合成

为了评估GNN的泛化能力,需要合成不同程度严重性的分布转移数据,现有基准图OOD数据集存在多样性但存在虚假相关性。可以通过调整数据选择偏差和生成受到标签反因果影响的虚假特征两种方式来创建多个级别的分布转移。调整数据选择偏差包括从均匀分布中采样不变子图和引入数据选择偏差来调整P(V|I),而生成虚假特征的方法包括为给定图生成节点标签和为环境i生成虚假节点特征。这些方法有助于评估GNN在OOD上的表现。

5.2 用于评估图公平性的数据集

5.2.1 基准数据集

用于图公平性研究的基准数据集是为了包含潜在偏见和不公平的例子而生成的,如代表性不足的群体或不平衡的类。数据集需要考虑传统图学习基准之外的其他因素。董等[12]总结了基准图公平性数据集,并将其分类为社交网络、基于推荐的图网络、学术网络和其他类型的网络。

5.2.2 专门数据合成

图神经网络在现实世界数据集上的公平性评估存在两个限制,需要定义敏感属性并获取评估所需的真实反事实图。为此,需要可控的合成图数据集。Ma等人基于因果模型合成数据用于评估GCF,敏感属性从伯努利分布中采样,节点特征和图结构都从潜在因素生成。Guo等人也利用这种数据合成想法生成只受Yi影响的恒定部分和只受Si影响的变体部分的节点特征。这些方法有助于评估图神经网络的公平性。

5.3 评估图解释的数据集

为了评估事实和反事实图解释器的性能,需要收集各种不同大小、类型、结构和应用场景的数据集。图数据集应满足两个标准:人类可理解、易于可视化,并能识别专家知识。这有助于对解释器的定量评估。在相关研究中,对一系列用于评估事实图解释质量的常用合成图、情感图和分子图数据集进行了深入分析,这些数据集也用于评估图反事实解释。

6 评价指标

评价指标的选择对于全面和准确评价所提出的模型至关重要。使用单一指标可能导致潜在偏见或错误。研究人员通常优先考虑与准确性相关的指标,如准确度、ROC-AUC、F1分数和精度。然而,这些指标可能无法揭示模型的可靠性。因此,提出了一些TGNN指标来评估模型。这些指标可以提供更全面的评价,并有助于确保模型在图相关应用中的实用性。

6.1 用于评估图OOD泛化能力的指标

为了评估OOD泛化的一般性,可以通过对比模型在不同分布偏移的测试环境中的精度相关指标。在高风险应用领域,如刑事司法和金融,更倾向于评估模型在各种OOD场景中的整体稳定性或鲁棒性。为此,列出了几个度量标准,包括平均精度(衡量所有测试环境的平均性能)、标准偏差精度(衡量所有测试环境的性能变化)和最坏情况精度(反映方法可能产生的最差结果)。前两个度量标准提供了对OOD稳定性的更广泛视角,最后一个度量标准在极端性能不可接受的应用中更为适用。

6.2 用于评估图公平性的指标

本节提出了各种指标来评估GNNs的公平性,包括统计平衡、平等机会等。这些指标主要关注不同敏感属性的群体在模型预测方面的差异。由于反事实公平被视为更全面的概念,因此有必要评估针对GCF优化的GNNs在这些基于关联的公平性指标上的表现。此外,GCF概念还诱导了基于因果关系的指标,如不公平分数和GCF指标。不公平分数定义为改变节点敏感属性时预测标签改变的节点百分比。GCF指标则测量模型预测的干预分布之间的差异,而不是节点表示之间的差异,同时考虑了节点及其邻居的敏感属性对模型公平性的影响。

6.3 用于评估图解释性的指标

为了解释模型的行为,生成了图解以解释模型行为,并从模型的角度提出了几种评估指标。这些指标包括忠诚度、稀疏性、稳定性、对比度、充足性概率和精度。这些指标适用于事实和反事实图解方法。为了生成GCEs,保持与原始输入图的相似性至关重要,因此必须从这一角度出发采用适当的指标来评估GCEs。已经采用了图形编辑距离和Tanimoto相似性等相似/距离度量。此外,Lucic等人提出了定制的MEG相似性,Liu等人定义了反事实相关性,Tan等人提出了必要性概率。此外,上述指标可以推广到每个输入图中生成多个GCEs的情况。此外,还提出了评估GCE超出其基本定义的其它视角的指标。Ma等人设计了因果比率,Huang和Kosan等人提出了覆盖率、成本和可解释性。

7 未来发展方向

我们将探讨几个未来研究方向,旨在研究如何将因果学习融入GNNs,以提高其可靠性。

(1) 扩展CIGNNs以适应大规模图。由于GNNs在消息传递方案中计算成本高昂,因此难以扩展到大规模图。尽管已经提出了许多可扩展的GNNs,但在CIGNNs方面的研究仍然存在显著的差距。一方面,CIGNNs中采用的技术可能无法扩展到大规模图。例如,用于创建多个反事实图的图扰动[24],[52]会导致计算成本随着图规模的增加而增加。另一方面,为可扩展GNNs设计的技术可能无法无缝地集成到CIGNNs中。例如,GNNs消息传递中的采样策略不可避免地会扰动节点邻域中的不变和可变成分,从而引起因果学习方法的关注。需要进一步探索CIGNNs的可扩展性。

(2) 受因果启发式的图基础模型。大型语言模型(LLMs)的成功推动了基于不同图数据预训练的图基础模型的发展,将因果关系集成到大型可靠图模型的开发中是一个有前途的方向。然而,现有受因果启发的方法的有效性在大型模型上受到质疑,因为这些方法主要在较小的GNN上评估。例如,图不变学习方法可能会在大型模型中过度拟合。鉴于大型图模型在改变图学习范式中的潜力,必须批判性评估现有工作,并探索基于因果的新方法来增强大型图模型的可靠性。

(3) 图上的因果关系发现。图神经网络的因果推理和因果表示学习能力可以增强其可信赖性,但需要领域知识来抽象出有意义的因果推理任务。在缺乏领域知识的情况下,因果表示学习的有效性依赖于对底层图生成机制的附加假设。因果发现可以以数据驱动的方式识别变量之间的因果关系,补充缺乏的领域知识,并检查数据因果性的假设。发现的因果知识可以灌输到图神经网络模型中,以促进学习语义上有意义且可识别的图形表示。因此,为图神经网络配备因果发现能力对于开发在各种应用场景中表现良好的图神经网络模型具有很大的潜力。

(4) 超越图反事实公平性。GCF概念通过敏感属性对输出节点表示的总因果效应来衡量图神经网络的公平性。但在存在不公平性时,GCF概念不再适用,因为敏感属性会在某些因果路径上影响结果。为了解决这个问题,干预公平性概念和特定路径的反事实公平性概念被提出,以捕捉实际应用中最突出的因果机制。尽管如此,这些概念尚未被用于改善图公平性,因此需要开发基于因果关系的图公平性概念以超越GCF。

(5) 基于因果性的隐私保护。隐私保护对GNN施加了额外的约束,与AI的因果性存在交集。Vo等人研究了隐私保护的反事实解释,但文献中缺乏从隐私保护角度研究CIGNN系统的研究。因此,值得探究现有CIGNN与隐私保护技术的兼容性,以建立适用于隐私关键场景的可信GNN系统。

编辑:黄继彦

aa09669233bfe6635761699b22fea38d.png

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值