通俗理解随机微分方程及应用

4567255adb5c0c562a9ee96e8cbaa24e.png

本文约1000字,建议阅读5分钟
随机微分方程,简单来说就是在传统微分方程的基础上加入了随机扰动。

随机微分方程(Stochastic Differential Equation, SDE)是一类含有随机扰动的微分方程,用来描述随机过程的动态行为。与常微分方程(ODE)不同,SDE在其模型中包含了一个或多个随机项,通常是布朗运动(或维纳过程)。SDE在金融、物理、生物数学等领域有广泛的应用。

随机微分方程,简单来说就是在传统微分方程的基础上加入了随机扰动。用数学语言来说,一个典型的SDE可以写成这样:

68676a8bae284ddff2fda75bcfdcabb4.png

这里,  是我们感兴趣的随机过程,  是确定性部分,描述了系统的趋势,而  则是随机性部分,反映了系统的随机波动。 是布朗运动,又称维纳过程,是描述随机扰动的经典工具。

布朗运动具有一些重要性质:初值为零,增量独立且服从正态分布,并且路径连续但不可微。这些性质使得布朗运动成为刻画随机现象的理想选择。

一个经典的随机微分方程模型是金融领域的几何布朗运动(Geometric Brownian Motion),用于描述股票价格的随机变化。它的数学形式为:

be732942770a6c756403070a9836a31f.png

这里, 是股票的漂移率,代表了股票价格的平均增长速度;是波动率,反映了股票价格的波动程度。这个模型假设股票价格的对数收益率是正态分布的,从而捕捉了股票价格的随机波动特性。

假设股票的初始价格为  ,漂移率  ,波动率  ,模拟时间为 1 年,时间步长为 0.01 年。下图为股票价格变化模拟图像:

23870e09250dbb4b9be6ed755d1eff84.png

编辑:于腾凯

关于我们

数据派THU作为数据科学类公众号,背靠清华大学大数据研究中心,分享前沿数据科学与大数据技术创新研究动态、持续传播数据科学知识,努力建设数据人才聚集平台、打造中国大数据最强集团军。

7142924c7ddfd5d157cce2de4b1b6655.png

新浪微博:@数据派THU

微信视频号:数据派THU

今日头条:数据派THU

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值