深度强化学习在水下目标识别中的应用研究∗

205fc2de229ad5875b068a9bb655e3a2.png

来源:专知
本文约1000字,建议阅读5分钟
文章详细分析了深度强化学习在军事领域的具体应用,重点聚焦于水下目标识别方向,并为实际推进深度强化学习技术在军事领域应用落地所面临的一系列问题和挑战进行了全面评估。

a6c83152cfcc42825246de9ac9141730.png

深度强化学习的发展标志着人工智能领域的一次革命性进步。它结合了深度学习和强化学习的技术,使智能 体能够在复杂、未知的环境中不断改进和优化自己的行为。论文首先对强化学习及深度强化学习相关的主流算法进行了综 述,剖析了现有方法的优点和局限性。进一步地,文章详细分析了深度强化学习在军事领域的具体应用,重点聚焦于水下目标识别方向,并为实际推进深度强化学习技术在军事领域应用落地所面临的一系列问题和挑战进行了全面评估,旨在促进这一技术在军事领域的可持续发展,为未来相关研究和实践提供了有力的参考。

深度学习(DL)和强化学习(RL)是机器学习 的两个重要子领域,近年来在理论发展和实际应用 等方面都取得了巨大进步。深度学习的基本前提 是使用复杂的神经网络架构和非线性变换技术来 有效地提取低级数据特征,并创建重要且难以获取 的抽象特征,从而实现高效的数据分析。该方法在 图像检测、语音识别、自然语言处理等领域取得了 优异的成绩[1] 。强化学习的基本原则是通过智能 体与环境的不断交互,获得的经验奖励让智能体自 行探索,学习最优策略[2] 。该方法已广泛应用于机 械手控制、模拟仿真等领域。深度强化学习(DRL)结合了深度学习和强化 学习的方法,旨在解决复杂、高维度的状态空间和 连续动作空间中的强化学习问题。图 1 展示了深 度强化学习的整体框架[3] 。在交互过程中,智能体通过与环境的互动获取观测信息,利用深度神经网络来学习环境的表示, 并输出决策策略,以最大化累积奖励。深度强化学 习的关键算法包括深度Q网络(DQN)、深度确定性 策 略 梯 度(DDPG)、双 重 深 度 确 定 性 策 略 梯 度 (TD3)等,这些算法通过端到端的学习方式可有效 地处理复杂问题。Mnih[4~5] 等为深度强化学习在实 际任务中的应用奠定了基础。DRL 在诸如自动驾 驶、机器人控制和游戏领域取得了显著的成功,为处理复杂决策问题提供了强大的工具。

关于我们

数据派THU作为数据科学类公众号,背靠清华大学大数据研究中心,分享前沿数据科学与大数据技术创新研究动态、持续传播数据科学知识,努力建设数据人才聚集平台、打造中国大数据最强集团军。

717d9b56deba818ba748e5e83d1aed3c.png

新浪微博:@数据派THU

微信视频号:数据派THU

今日头条:数据派THU

《RSMA与速率拆分在有限反馈通信系统的MMSE基预编码实现》 本文将深入探讨RSMA(Rate Splitting Multiple Access)技术在有限反馈通信系统应用,特别是通过MMSE(Minimum Mean Square Error)基预编码进行的实现。速率拆分是现代多用户通信系统一种重要的信号处理策略,它能够提升系统的频谱效率和鲁棒性,特别是在资源受限和信道条件不理想的环境。RSMA的核心思想是将用户的数据流分割成公共和私有信息两部分,公共信息可以被多个接收器解码,而私有信息仅由特定的接收器解码。这种方式允许系统在用户间共享信道资源,同时保证了每个用户的个性化服务。 在有限反馈通信系统,由于信道状态信息(CSI)的获取通常是有限且不精确的,因此选择合适的预编码技术至关重要。MMSE预编码是一种优化策略,其目标是在考虑信道噪声和干扰的情况下最小化期望平方误差。在RSMA,MMSE预编码用于在发射端对数据流进行处理,以减少接收端的干扰,提高解码性能。 以下代码研究RSMA与MMSE预编码的结合以观察到如何在实际系统应用RSMA的速率拆分策略,并结合有限的反馈信息设计有效的预编码矩阵。关键步骤包括: 1. **信道模型的建立**:模拟多用户MIMO环境,考虑不同用户之间的信道条件差异。 2. **信道反馈机制**:设计有限反馈方案,用户向基站发送关于信道状态的简化的反馈信息。 3. **MMSE预编码矩阵计算**:根据接收到的有限反馈信息,计算出能够最小化期望平方误差的预编码矩阵。 4. **速率拆分**:将每个用户的传输信息划分为公共和私有两部分。 5. **信号发射与接收**:使用预编码矩阵对信号进行处理,然后在接收端进行解码。 6. **性能评估**:分析系统吞吐量、误码率等性能指标,对比不同策略的效果。
在探索智慧旅游的新纪元,一个集科技、创新与服务于一体的整体解决方案正悄然改变着我们的旅行方式。智慧旅游,作为智慧城市的重要分支,旨在通过新一代信息技术,如云计算、大数据、物联网等,为游客、旅游企业及政府部门提供无缝对接、高效互动的旅游体验与管理模式。这一方案不仅重新定义了旅游行业的服务标准,更开启了旅游业数字化转型的新篇章。 智慧旅游的核心在于“以人为本”,它不仅仅关注技术的革新,更注重游客体验的提升。从游前的行程规划、信息查询,到游的智能导航、个性化导览,再到游后的心情分享、服务评价,智慧旅游通过构建“一云多屏”的服务平台,让游客在旅游的全过程都能享受到便捷、个性化的服务。例如,游客可以通过手机APP轻松定制专属行程,利用智能语音导览深入了解景点背后的故事,甚至通过三维GIS地图实现虚拟漫游,提前感受目的地的魅力。这些创新服务不仅增强了游客的参与感和满意度,也让旅游变得更加智能化、趣味化。 此外,智慧旅游还为旅游企业和政府部门带来了前所未有的管理变革。通过大数据分析,旅游企业能够精准把握市场动态,实现旅游产品的精准营销和个性化推荐,从而提升市场竞争力。而政府部门则能利用智慧旅游平台实现对旅游资源的科学规划和精细管理,提高监管效率和质量。例如,通过实时监控和数据分析,政府可以迅速应对旅游高峰期的客流压力,有效预防景区超载,保障游客安全。同时,智慧旅游还促进了跨行业、跨部门的数据共享与协同合作,为旅游业的可持续发展奠定了坚实基础。总之,智慧旅游以其独特的魅力和无限潜力,正引领着旅游业迈向一个更加智慧、便捷、高效的新时代。
内容概要:本文详细介绍了基于西门子200 SMART PLC和ABB ACS510变频器构建的恒压供水系统。该系统实现了泵数量自适应、时间轮换机制、频率控制、故障替换逻辑以及多段压力控制等功能。文通过具体的梯形图和结构化文本(ST)代码片段解释了各个功能模块的工作原理和技术细节。例如,泵数量自适应通过VB100寄存器动态调整泵的数量;时间轮换机制利用指针寻址和环形队列确保泵的均匀使用;频率控制采用PID调节,并提供PLC和变频器两种PID控制方式的选择;故障替换逻辑设有‘三次重试’机制,保障系统的可靠性;多段压力控制则通过环形缓冲区存储24小时压力设定值,优化能源消耗。此外,系统还采用了频率滞回比较算法和平滑过渡策略,使得管网压力波动保持在较小范围内。 适用人群:从事工业自动化领域的工程师和技术人员,尤其是对PLC编程和变频器应用有一定基础的人群。 使用场景及目标:适用于小型项目的恒压供水系统设计与实施。主要目标是提高系统的灵活性、可靠性和能效,减少设备磨损,降低运维成本。 其他说明:文提到的一些具体实现方法如指针寻址、环形队列、PID参数设置等,对于理解和掌握现代工业控制系统具有重要价值。同时,文提供的代码片段可以直接用于实际工程,帮助工程师快速搭建高效稳定的恒压供水系统。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值