来源:专知
本文为论文介绍,建议阅读5分钟
我们提出了解耦三平面生成模块,以引入全局特征上下文和光滑性,减轻由局部更新引起的误差。
摘要:基于三平面的辐射场在近年来受到关注,因其能够有效解耦三维场景,同时提供高质量的表示和低计算成本。该方法的一项关键要求是精确输入相机姿态。然而,由于三平面的局部更新特性,类似于先前的联合姿态-神经辐射场优化工作的联合估计容易导致局部最小值。为此,我们提出了解耦三平面生成模块,以引入全局特征上下文和光滑性,减轻由局部更新引起的误差。随后,我们提出了解耦平面聚合,以缓解在相机姿态更新过程中由于常见三平面特征聚合而造成的纠缠。此外,我们引入了一种两阶段的热启动训练策略,以减少由三平面生成器引起的隐性约束。定量和定性结果表明,我们提出的方法在具有噪声或未知相机姿态的新视图合成中实现了最先进的性能,同时优化的收敛效率也得到了提升。项目页面:https://gaohchen.github.io/DiGARR/。
关键词:NeRF · 解耦 · 姿态估计 · 新视图合成
关于我们
数据派THU作为数据科学类公众号,背靠清华大学大数据研究中心,分享前沿数据科学与大数据技术创新研究动态、持续传播数据科学知识,努力建设数据人才聚集平台、打造中国大数据最强集团军。
新浪微博:@数据派THU
微信视频号:数据派THU
今日头条:数据派THU