【AAAI2025】偏好导向的监督微调:优先选择目标模型而非对齐的大语言模型

52f10785253bcfea243acea086187c1d.png

来源:专知
本文约1000字,建议阅读5分钟
PoFT在不同的训练数据集和基础模型上,相比传统SFT基准方法表现出稳定且一致的改进。

d2471b9a002647e5da8c9f186403648c.png

摘要
对齐,即赋予预训练的大语言模型(LLM)遵循指令的能力,对于其在现实世界中的应用至关重要。传统的监督微调(SFT)方法将其形式化为因果语言建模,通常采用交叉熵目标,需要大量高质量的指令-响应对。然而,由于创建和维护高质量数据集的成本高昂且劳动密集,广泛使用的SFT数据集的质量无法得到保证。为了解决与SFT数据集质量相关的局限性,我们提出了一种新颖的偏好导向监督微调方法,即PoFT。其直觉是通过施加特定的偏好来提升SFT:在相同的SFT数据上,优先选择目标模型而非对齐的大语言模型。这种偏好鼓励目标模型预测出比对齐LLMs更高的概率,从而将数据质量评估信息(即对齐LLMs的预测概率)融入训练过程中。我们进行了广泛的实验,结果验证了该方法的有效性。PoFT在不同的训练数据集和基础模型上,相比传统SFT基准方法表现出稳定且一致的改进。此外,我们证明PoFT可以与现有的SFT数据过滤方法结合,进一步提升性能,并通过偏好优化程序(如DPO)进一步改进。

代码 — https://github.com/Savannah120/alignmenthandbook-PoFT/

8bae921c8b1cbc2ea917ac5bbf8508cc.png

关于我们

数据派THU作为数据科学类公众号,背靠清华大学大数据研究中心,分享前沿数据科学与大数据技术创新研究动态、持续传播数据科学知识,努力建设数据人才聚集平台、打造中国大数据最强集团军。

a3e4f773713ca1124558eccd76e55677.png

新浪微博:@数据派THU

微信视频号:数据派THU

今日头条:数据派THU

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值