独家 | 手把手教你从有限的数据样本中发掘价值(附代码)

640?wx_fmt=png

作者:Bety Rodriguez-Milla

翻译:和中华

校对:吴金笛

本文约2800字,建议阅读8分钟。

本文展示了当数据稀缺时,如何一步步进行分析从而得到一些见解。

 

[ 导读 ]本文是系列文章中的一篇,作者对滑铁卢地区的Freedom of Information Requests数据集进行探索分析,展示了在实践中拿到一批数据时(尤其像本文中的情况,数据很稀缺时),该如何一步步进行分析从而得到一些见解。作者的同事也对该数据集使用其他方法进行了分析,建议对NLP感兴趣的读者也一并阅读,将大有裨益。


最近我碰到了滑铁卢地区的Open Data项目,连同它的Freedom of Information Requests数据集。我的同事Scott Jones已经在一系列文章中使用机器学习(ML)技术对其进行了分析。由于数据不足,ML表现不佳。虽然Scott做了在这种情况下应该做的事情,即寻找更多数据。尽管数据很稀缺,但我仍然很好奇这些数据还能告诉我什么。毕竟数据总是有价值的。

 

在进入这段8分钟的阅读旅程之前,我想说你可以在Github上找到Jupyter notebook里的所有代码和对这些数据的更多见解,由于内容太多,文章里无法一一介绍。如果你不想阅读notebook,可以在下面链接的相关文件中找到全部图形结果。

Github相关链接:

https://github.com/brodriguezmilla/foir

相关文件:

https://github.com/brodriguezmilla/foir/blob/master/foir_all_figures.pdf

接下来,我向你介绍其中几个分析的要点。

 

了解数据


我们使用pandas库来实现这一步,以下是Open Data中的文件之一:

 

640?wx_fmt=png

1999年的Freedom of Information Requests文件样本

 

我们有18个文件,从1999年至2016年每年一个,总共有576个请求(Requests),令人惊讶地是全部都有相同的六列。我们将只使用三个主要列,来源(Source),请求摘要(Summary_of_Request)和决策(Decision)。

 

  • Source。 这是发出请求的实体,即请求者。 通过查看多年来的信息,能够将其合并为“Business”,“Individual”,“Individual by Agent”,“Media”,“Business by Agent”和“Individual for dependant”。

  • Summary_of_Request。 包含已由记录员编辑过的请求。

  • Decision。合并后的类别包括:“All information disclosed”,“Information disclosed in part”,“No records exist”,“Request withdrawn”,“Partly non-existent”,“No information disclosed”,“Transferred”,“Abandoned”, “Correction refused”,“Correction granted”,“No additional records exist”。

 

这些列的相互之间关系如何?


描述性统计和探索性数据分析


在本节中,我们将重点关注Source和Decision列。稍后我们将使用一些NLP工具分析这些请求。以下是数据的分布:


640?wx_fmt=jpeg


大约60%的请求是“All information disclosed”或“Information disclosed in part”。 至少有七种类型的决策少于25个实例,其中一个最重要的决策是“No information disclosed”。 因此,我们不仅数据量有限,而且还存在不平衡的情况。 对于机器学习来说这都不太好。

 

通过另一种数据视图,即Source 与 Decision的透视表,我们看到大多数请求都是由“Business”,“Individual”和“Individual by Agent”发起的。


640?wx_fmt=jpeg


将每个来源的数字进行处理,使每一行加起来等于1,我们看到主要的三个来源表现良好,因为“All information disclosed”每个都超过30%,“Information disclosed in part”则增加了18%至34%,甚至更多。 两者相加在50%以上。此外,“Individual by Agent”的成功率高于“Individual”。几乎没有请求的“Media”表现不佳,只有10%的请求被决策为“All information disclosed”。


640?wx_fmt=png

 

自然语言处理(NLP)


现在我们继续分析Summary_of_Requests列。为此,我们转投自然语言处理库,例如NLTK和spaCy,以及scikit-learn的帮助。

 

从广义上讲,在分析任何文本之前,需要做的步骤其实很少(参见Susan Li的帖子):

https://towardsdatascience.com/topic-modelling-in-python-with-nltk-and-gensim-4ef03213cd21


  • 对文本进行分词:将文本分解为单个特殊实体/单词,即token。

  • 删除任何不需要的字符,比如回车换行和标点符号,像' - ','...','“'等。

  • 删除网址或将其替换为某个单词,例如“URL”。

  • 删除网名或用某个单词替换“@”,例如“screen_name”。

  • 删除单词的大小写。

  • 删除少于等于n个字符的单词。在本例中,n = 3。

  • 删除停用词,即某种语言中含义不大的词。这些词可能无助于对我们的文本进行分类。例如“a”,“the”,“and”等词。但并没有一个通用的停用词列表。

  • 词形还原,它是将单词的变种形式归并在一起的过程,这样它们就可以作为单个词项进行分析,就可以通过单词的词目(lemma)或词典形式来识别。

 

因此,在编写了处理函数之后,我们可以对文本进行转换:


 
 
def prepare_text_tlc(the_text):	
    text = clean_text(the_text)	
    text = parse_text(text)	
    tokens = tokenize(text)	
    tokens = replace_urls(tokens)	
    tokens = replace_screen_names(tokens)	
    tokens = lemmatize_tokens(tokens)	
    tokens = remove_short_strings(tokens, 3)	
    tokens = remove_stop_words(tokens)	
    tokens = remove_symbols(tokens)	
    return tokens


由于我们会持续处理此文本,因此我们将预处理过的文本作为新列“Edited_Summary”添加到dataframe中。


640?wx_fmt=png

 

N元语法(N-grams)和词云


还能如何分析和可视化我们的文本呢?作为第一步,我们可以找到最常用的单词和短语,即我们可以获得一元语法(单个tokens)和 n元语法(n-tokens组)及它们在文本中的频率。

 

 
 
def display_top_grams(gram, gram_length, num_grams):	
	
    gram_counter = Counter(gram)	
    	
    if gram_length is 1:	
        name = 'unigrams'	
    elif gram_length is 2:	
        name = 'bigrams'	
    elif gram_length is 3:	
        name = 'trigrams'	
    else:	
        name = str(gram_length) + '-grams'	
        	
    print("No. of unique {0}: {1}".format(name, len(gram_counter)))	
for grams in gram_counter.most_common(num_grams):	
        print(grams)	
    return None

 

所以对于我们的一元语法:


640?wx_fmt=png

 

并使用WordCloud:


640?wx_fmt=jpeg


那为什么“remove”这个词如此突出?事实证明,出于隐私原因,原始请求中写入的所有姓名,日期和位置都已删除,并在Open Data的文件中被替换为“{location removed}”或“{date removed}”等短语。这种替换共有30多种变体。 使用正则表达式(regEx)来清理文本,我们得到了一个更好的词云。这一次,我们也加入了二元语法。

640?wx_fmt=jpeg


看一下上面的词云和三元语法:


640?wx_fmt=png


我们看到有一些常见的短语,例如“ontario works”,“environmental site”,“grand river transit”,“rabies control”,“public health inspection”和“food bear illness”(亦如'food borne illness ' – 还记得我们之前曾把tokens进行了词形还原)。 那么,这些短语在我们的文本中有多常见?包含这些短语的请求信息是否影响请求被批准的可能性?事实证明,46%的数据是那些类型的请求,这些短语没有一个得到“No information disclosed”的决策,并且有明显的趋势:


640?wx_fmt=jpeg


例如,“rabies control”约有95%披露了全部或部分信息,而5%被转移了。


对Summary_of_Request和Edited_Summary 列统计


我们已经知道现有数据量是有限的,但到底多有限呢?好吧,只有7个请求超过100个单词,而分词后只剩1个。平均每个请求有21个单词,而中位数为15,而分词后平均为9个单词,中位数为7。


640?wx_fmt=jpeg

640?wx_fmt=png


词性(POS)标记


在这里,我们使用spaCy来识别该文本是如何由名词,动词,形容词等组成的。 我们还使用函数spacy.explain()来找出这些标记的含义。


 
 
full_text_nlp = nlp(full_text)    # spaCy nlp()	
tags = [] 	
for token in full_text_nlp:	
    tags.append(token.tag_)	
tags_df = pd.DataFrame(data=tags, columns=['Tags'])	
print("Number of unique tag values:\	
      {0}".format(tags_df['Tags'].nunique()))	
print("Total number of words: {0}".format(len(tags_df['Tags'])))	
# Make a dataframe out of unique values	
tags_value_counts = tags_df['Tags'].value_counts(dropna=True,	
                    sort=True)	
tags_value_counts_df = tags_value_counts.rename_axis(	
                       'Unique_Values').reset_index(name='Counts')	
# And normalizing the count values	
tags_value_counts_df['Normalized_Count'] = tags_value_counts_df['Counts'] / len(tags_df['Tags'])	
uv_decoded = []	
for val in tags_value_counts_df['Unique_Values']:	
    uv_decoded.append(spacy.explain(val))	
tags_value_counts_df['Decoded'] = uv_decoded	
tags_value_counts_df.head(10)


640?wx_fmt=jpeg


同时将类别合并,例如“名词,单数或大量”和“名词,复数”,以形成更通用的版本,以下是这些请求的组成方式:


640?wx_fmt=png


使用scikit-learn,Bokeh和t-SNE进行主题建模


在notebook中,我们使用不同的主题建模技术,包括scikit-learn的隐含狄利克雷分布(LDA)函数,潜在语义分析(LSA),并且用 CountVectorizer()和TfidfVectorizer()做对比,gensim的LDA,使用t-SNE用于降维,Bokeh和pyLDAvis用于可视化。 我们不会在此处附上完整代码,所以鼓励你去亲自查看完整的notebook。鉴于我们数据的局限性,所有工具都还表现得不错。下图是一个亮点:


640?wx_fmt=jpeg


几乎所有最常见的短语都在主题中出现了。正如预期的那样,一些主题是明确的,例如“ontario works”或“environmental site”,而其他聚类则不然。


640?wx_fmt=png


机器学习


我们已经知道机器学习效果不会很好,但鉴于这是一个学习练习,我们仍然要试一下。在notebook中,我们比较了三种不同情况下的八种不同机器学习模型。我们无法按原样比较完整数据,因为某些情况只有极少数实例。例如,只有一个请求被“Correction granted”,因此当我们训练模型时,该情况将要么在训练集中,要么在测试集中。只有一个案例并不能提供一个良好的基础。我们的选择很少:

 

  • 我们可以删除少于15个实例的请求,称之为“Over-15”。

  • 我们将全部决议分成三个基本类别:

    • All information disclosed(加上“Correction granted”。)

    • Information disclosed in part(加上“Partly non-existent”。)

    • No information disclosed(加上' Transferred',' No records exist',' Correction refused',' No additional records exist',' Withdrawn'和' Abandoned'。)这会使我们的数据集更平衡。

  • 我们可以删掉少于15个实例的请求,并且删掉没有实际结果的决策,即撤回或抛弃的情况,称之为“Independent”。

 

以下是结果:


640?wx_fmt=jpeg


总体而言,逻辑回归和多项式朴素贝叶斯分类器结合tf-idf给出了更好的结果。 对我们的类别进行分箱(binning)似乎是最合乎逻辑的方法。

 

可以在以下Github链接中找到代码和完整的结果:

Github链接:

https://github.com/brodriguezmilla/foi


原文标题:

When Data is Scarce… Ways to Extract Valuable Insights

原文链接:

https://towardsdatascience.com/when-data-is-scarce-ways-to-extract-valuable-insights-f73eca652009

译者简介

640?wx_fmt=jpeg

和中华,留德软件工程硕士。由于对机器学习感兴趣,硕士论文选择了利用遗传算法思想改进传统kmeans。目前在杭州进行大数据相关实践。加入数据派THU希望为IT同行们尽自己一份绵薄之力,也希望结交许多志趣相投的小伙伴。

翻译组招募信息

工作内容:需要一颗细致的心,将选取好的外文文章翻译成流畅的中文。如果你是数据科学/统计学/计算机类的留学生,或在海外从事相关工作,或对自己外语水平有信心的朋友欢迎加入翻译小组。

你能得到:定期的翻译培训提高志愿者的翻译水平,提高对于数据科学前沿的认知,海外的朋友可以和国内技术应用发展保持联系,THU数据派产学研的背景为志愿者带来好的发展机遇。

其他福利:来自于名企的数据科学工作者,北大清华以及海外等名校学生他们都将成为你在翻译小组的伙伴。


点击文末“阅读原文”加入数据派团队~

转载须知

如需转载,请在开篇显著位置注明作者和出处(转自:数据派ID:datapi),并在文章结尾放置数据派醒目二维码。有原创标识文章,请发送【文章名称-待授权公众号名称及ID】至联系邮箱,申请白名单授权并按要求编辑。

发布后请将链接反馈至联系邮箱(见下方)。未经许可的转载以及改编者,我们将依法追究其法律责任。

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

点击“阅读原文”拥抱组织

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值