27、德国互联网的国家中心视角与DNS顶级查询者行为分析

德国互联网的国家中心视角与DNS顶级查询者行为分析

德国互联网自治系统结构分析

在研究德国互联网时,我们聚焦于其自治系统(AS)的结构。近期研究表明,对于75%的源AS,多个IP前缀可通过相同的AS路径到达。而且我们关注的是一个由对等点密集连接的区域网络,服务提供商网络内的国际重定向不在我们的主要研究范围内,所以在AS层面限制路由是一种有效的近似方法。

我们基于NECLab拓扑项目提供的加权下一跳矩阵,为每个部门确定了AS路由图、两个部门之间的双边交换情况,以及所有德国AS的AS图。该数据通过UCLA的持续更新测量计算得出,反映了BGP策略决策。为排除不完整路径,我们在矩阵处理时省略了不同索引下值为 -1 的行列,不过这种情况极少发生(≪0.3%)。此外,路由图中的AS集合还扩展了之前未分配到国家相关互联网部分的中间AS,这些中转节点用于连接原本会孤立的国家子集。

以下是对AS结构的具体分析:
1. 节点中心性
- 中间节点在源和接收者之间作为中转起着重要作用。节点 m 的中介中心性 B(m) 定义为:若节点 i 和 j 之间的最短路径总数为 B(i, j),经过节点 m 的最短路径数为 B(i, m, j),则 $B(m) = \sum_{i\neq m\neq j,i\neq j}\frac{B(i,m,j)}{B(i,j)}$ ,该测量也量化了中间AS的负载,中介中心性通过 (|V| - 1)(|V| - 2) 进行归一化。
- 这里的最短路径指实际采用的路由路径,我们的BGP路由模型反映了策略。使用NEC矩阵,两个AS之间存在唯一有效的路径。在大多数情况下,该测量在从最重要的AS过渡到第二个AS时会出现尖

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析仿真验证相结合。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值