Faster RCNN 推理 从头写 java (二) RPN网络预测

一: 输入输出

输入:

  • omg: 经过预处理过的图像, shape为 [1, 600, 800, 3].

输出:

  • cls: 每个anchor在pixel上的概率, shape为 [1, 37, 50, 49].
  • reg: 每个anchor在pixel上的回归值, shape 为 [1, 37, 50, 196].
  • feature: 经过VGG16后的feature map, shape 为 [1, 37, 50, 512].

二: 流程

  • 图片BGR 格式转换为 RGB 格式。
  • 图片缩放。
  • 图片均值中值化。

三: code by code

img 转换为tensorflow 的 Tensor

Tensor<Float> input = TypeConvertor.ndarrayToTensor(img);

预测

List<Tensor<?>> output = this.session.runner().
        feed(INPUT_NAME, input).
        fetch(OUTPUT_CLS_NAME).fetch(OUTPUT_REG_NAME).fetch(OUTPUT_FEATURE_MAP_NAME).
        run();

构建输出
0: cls
1: reg
3: feature

return new FasterRCnnRPN_Output(output.get(0), output.get(1), output.get(2));
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值