文章目录
问题:在存在极度偏斜的数据中,应用分类准确度来评价分类算法的好坏是远远不够的。
eg:如果癌症的产生概率只有0.1%,那么系统只要预测所有人都是健康的就可以达到99.9%的准确率,因此虽然准确率很高,但是预测系统实际上没有发挥什么作用。
混淆矩阵

precision recall
召回率(recall):
r e c a l l = T P T P + F N recall=\frac{T P}{T P+F N} recall=TP+FNTP
精准率(precision):
p r e c i s i o n = T P T P + F P precision=\frac{TP}{T P+F P} precision=TP+FPTP

F1 Score
1 F 1 = 1 2 ( 1 precision + 1 recall ) \frac{1}{F 1}=\frac{1}{2}\left(\frac{1}{\text {precision}}+\frac{1}{\text {recall}}\right) F11=2

在机器学习中,使用分类准确度评估极度偏斜数据的分类算法并不准确。混淆矩阵提供precision和recall,F1 Score衡量模型性能。precision适合股票预测,recall适用于病人诊断。AUC和ROC曲线衡量分类器的性能,ROC曲线通过假阳性率和真阳性率描绘了不同阈值下的表现。可以使用sklearn库或自定义Python代码实现这些指标。
最低0.47元/天 解锁文章

1217

被折叠的 条评论
为什么被折叠?



