【pandas】对整个DataFrame使用apply方法及一些注意事项(设置axis,空值陷阱,获取index列信息)

在pandas中,“apply+lambda函数”是数据批量处理最效率、最简洁的方法。

在实际工作中,我们常会遇到批量处理列数据的情况,比如我们需要将表格中某一列数据的第1个字符提取出来,存入新的一列;或者我们需要将某两列数据进行配对比较,将较大的一个数存放到新的一列中。这就涉及到了列数据按规则批量赋值,其中这个规则,便是lambda函数。

对某一列使用apply+lambda

对一列使用apply+lambda函数非常简单,直接以代码做例子:

df['ApartmentNum'] = df['Apartment'].apply(lambda x:x[-4:])

对一列使用apply的本质即 对一个pandas的Series对象中的内容做函数变换。

对一整个DataFrame使用apply

当需要对每一行的超过两 列/字段 的数据进行批处理,并新生成一列时,便需要对一整个DataFrame使用apply。
比如下图,我们需要将上面数据表的Apartment这一列的后4位数字,和ID这一列的前3位数字合并起来,存放到新的一列“ApartmentID”中。
在这里插入图片描述
处理代码为:

df['Apartmen
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值