背景
在使用单片机设计数字开关电源时,一定会遇到需要对电压或者电流 进行采样的需求。比较常见的是12位的模数转换(ADC),也就是将需要采集的电压,等比缩放到3.3V(单片机可以采集的范围)等比缩放在0-4096的范围内的某一个采集值。然后利用采集值去运算。
然而,人们往往希望可以用实际的电压值去进行计算。可以更加方便更加直观的得到数值。但是单片机计算浮点比较慢或者不支持浮点数的运算,而在日常生活中却经常会遇到小数的情况。使用整数的情况是很少的。单片机会自动把小数点后面的数舍去,严重影响了计算的精度甚至会影响计算的正确性。
比如:
unsigned int a=8,b=3,c=0;
c=a/b;
//其结果等于c=2
unsigned int a=10,b=3,c=0;
c=a/b;
//其结果等于c=3
定点数计算
单片机是可以比较快的进行整型计算的。为了利用这一点,并使单片机可以很轻松的表示小数。
定点小数是计算机处理的数值数据多数带有小数,小数点在计算机中通常有两种表示方法,一种是约定所有数值数据的小数点隐含在某一个固定位置上,称为定点表示法,简称定点数。另一种则是浮点小数。其小数点的位置可按需要进行浮动。分为单精度和双精度。具体的区别可以参考:链接 计组总结3-定点数和浮点数
对于一个16位数据。如果只表示0到100的数,用整数表示的话就有65436个整数被浪费了。而且精度也不高只有1。但是如果把0到100映射到16位数据中。可以将数字乘10。也就是:
【
0
−
100
】
∗
10
=
【
0
−
1000
】
【0-100】*10=【0-1000】
【0−100】∗10=【0−1000】
以前用16位数据的0–100代表0–100。16位的单位1表示1;
现在用16位数据的0-1000代表0–100。16位的单位1表示0.1;
这样一计算精度提升了10倍。
【例子】可以从这个例子看出这样做的好处。
// 需要计算1000/473*100,保留5位小数结果如下:
c=1000/473*100;
c=211.41649;
//如果按单片机顺序计算
c=1000/473*100;
c=200;
//损失了11.41649
//改变计算顺序单片机计算
c=1000*100/473;
c=211;
//损失了0.41649;
//扩大10倍;
c=1000*100*10/473;
c=2214;
//相当于221.4 精度扩大了10倍。
实际应用
在使用单片机设计数字电源时候,往往会提到定标。比如Q12、Q9 、Q0等数字。以前因为一直使用的TI公司提供的IQmath。想使用直接_IQ15(),_IQint( ), _IQtoF()…有各种各样的函数供使用,甚至还会有三角函数,限幅函数等。但是在不支持这个库的时候,还是需要自己搞清楚这里面的道理。
以下设计了一个采样电路 电压最大值为65VDC,使用3.3V单片机12位的ADC。想使用Q9的定标数。也就是需要实际应用在单片机的结果应该是:
65 * Q9(512) =33280。
65V 对应 3V 对应 采样结果 3723
则 需要乘一个系数 K
K
=
33280
/
3723
=
8.94
;
K= 33280 / 3723 = 8.94;
K=33280/3723=8.94;
但是也不可能直接用8.94去处理啊。因为8.94也是一个小数,单片机会处理掉0.94,会产生较大的误差。
于是:
结
果
=
3723
∗
(
K
∗
Q
12
)
/
Q
(
12
)
结果=3723*(K*Q12)/Q(12)
结果=3723∗(K∗Q12)/Q(12)
结
果
=
3723
∗
36618
/
Q
(
12
)
结果=3723*36618/Q(12)
结果=3723∗36618/Q(12)
结
果
=
33283
结果=33283
结果=33283
与之前期望结果65*Q9,也就是33280相比。使用定标方式出来的结果和期望结果基本无误差。
个人理解
1.可以把存储地址充分使用。
2.提高计算的精度和速度。
3.由于定标的存在,很方便对参数正推或者反推。不用每次都计算一边。
4.传递函数的补偿环节,在改变采样电路后。只需要增加一个简单的比例环节。依旧可以使用之前的系数。
5.方便给其他设计人员阅读。
6.上面系数为什么是36618呢?为什么是Q12呢?如果之前的解释没有搞懂。不妨看看下面期望值(Q9)的推导:
V
∗
Q
9
=
V
∗
Q
9
/
A
D
C
∗
Q
12
∗
A
D
C
/
Q
12
V*Q9=V*Q9/ADC*Q12*ADC/Q12
V∗Q9=V∗Q9/ADC∗Q12∗ADC/Q12
其中,VQ9/ADCQ12 可以带入一个电压值和ADC值求出该系数K。
V
∗
Q
9
=
A
D
C
∗
K
/
Q
12
V*Q9=ADC*K/Q12
V∗Q9=ADC∗K/Q12
这么做,小数部分的计算还是存在,只不过是交给了设计者而不是单片机;精度也提高了;Q值的计算可以转换成单片机的左右移动的计算方式。左右移动的计算速度比乘除法的计算速度快多了。