coursera ML 错题集

这篇博客解析了在Coursera的机器学习课程中,关于梯度下降和正规方程的一些常见错误理解。主要内容包括:梯度下降如何通过减少迭代次数加速优化过程,正规方程解并不需要特征缩放,特征缩放并不能解决矩阵不可逆问题,以及特征缩放无法防止梯度下降陷入局部最优。尽管是多选题,但可以选择单个答案。
摘要由CSDN通过智能技术生成


【解析】It speeds up gradient descent by making it require fewer iterations to get to a good solution.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值