初等数论【整除性篇】之习题证明

这篇博客详细解析了初等数论中关于整除性的多个习题,包括奇数平方减1与8的关系、3的幂与2的倍数的性质、带余除法的应用、整除性传递性等,通过严谨的数学证明阐述了各个命题的正确性。
摘要由CSDN通过智能技术生成

1

题目:

证明:任意奇数的平方减1是8的倍数

证明

设这个奇数为 a + 1 a+1 a+1, a a a为偶数

它的平方-1为 a 2 + 2 a = a ( a + 2 ) a^2+2a=a(a+2) a2+2a=a(a+2)

∵ \because a a a为偶数

∴ \therefore a a a a + 2 a+2 a+2中肯定有一个数可以被4整除

∴ \therefore a ( a + 2 ) a(a+2) a(a+2) 8 8 8的倍数

得证

2

题目

n n n是偶数时, 2 ∣ 3 n + 1 2|3^n+1 23n+1;当 n n n是奇数时, 2 2 ∣ 3 n + 1 2^2|3^n+1 223n+1;
证明:
但无论 n n n是偶数还是奇数,对任意整数 α > 2 \alpha>2 α>2,都有 2 α ∤ 3 n + 1 2^\alpha \nmid 3^n+1 2α3n+1

证明

证:

3 1 = 3 3^1=3 31=3, 3 % 8 =

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值