1
题目:
证明:任意奇数的平方减1是8的倍数
证明
设这个奇数为 a + 1 a+1 a+1, a a a为偶数
它的平方-1为 a 2 + 2 a = a ( a + 2 ) a^2+2a=a(a+2) a2+2a=a(a+2)
∵ \because ∵ a a a为偶数
∴ \therefore ∴在 a a a与 a + 2 a+2 a+2中肯定有一个数可以被4整除
∴ \therefore ∴ a ( a + 2 ) a(a+2) a(a+2)为 8 8 8的倍数
得证
2
题目
当 n n n是偶数时, 2 ∣ 3 n + 1 2|3^n+1 2∣3n+1;当 n n n是奇数时, 2 2 ∣ 3 n + 1 2^2|3^n+1 22∣3n+1;
证明:
但无论 n n n是偶数还是奇数,对任意整数 α > 2 \alpha>2 α>2,都有 2 α ∤ 3 n + 1 2^\alpha \nmid 3^n+1 2α∤3n+1
证明
证:
3 1 = 3 3^1=3 31=3, 3 % 8 =