《初等数论》:整除性概念及其性质、质数与合数

整除性概念与性质

概念

定义1

b ≠ 0 b \ne 0 b=0 ,若有一整数 q q q ,使得 a = b q a=bq a=bq , 则称 b b b 能整除 a a a , 或 a a a 能被 b b b 整除,记作 b ∣ a b \mid a ba 。此时我们把 a a a 叫作 b b b 的倍数, b b b 叫作 a a a 的因数。否则,称 b b b 不能整除 a a a,或 a a a 不能被 b b b 整除,记作 b ∤ a b \nmid a ba

定义2

b ∣ a b \mid a ba 1 < ∣ b ∣ < ∣ a ∣ 1 \lt |b| \lt |a| 1<b<a,则称 b b b a a a真因数

定理

定理一

设   b , c   均 不 为 零 。 则 有 : 设\,b,c\,均不为零。则有: b,c

  • ( 1 ) 若   c ∣ b   ,   b ∣ a   ,   则   c ∣ a   。 (1) \quad 若\,c \mid b\,,\,b \mid a\,,\,则\,c \mid a\,。 (1)cb,ba,ca
  • ( 2 ) 若   b ∣ a   , 则   b c ∣ a c   ; 若   b c ∣ a c   , 则   b ∣ a   。 (2) \quad 若\, b \mid a\,,则\,bc \mid ac\,;若\,bc \mid ac\,,则\,b \mid a\,。 (2)ba,bcac;bcac,ba
  • 若   c ∣ a   ,   c ∣ b   , 则 对 任 意 整 数   m , n   ,   c ∣ ( m a + n b )   。 若\,c \mid a\,,\,c \mid b\,,则对任意整数\,m,n\,,\,c \mid (ma+nb)\,。 ca,cb,m,n,c(ma+nb)

定理二

相继 k k k 个整数的乘积能被 k ! k! k! 整除,即 k ! ∣ n ( n − 1 ) ⋯ ( n − k + 1 ) k! \mid n(n-1)\cdots(n-k+1) k!n(n1)(nk+1)

证 : ( 1 )   若 相 继   k   个 整 数 均 为 正 整 数 , 则 当 正 整 数   n ≥ k   时 , 注 意 到 组 合 数   C n k   总 是 一 个 正 整 数 , 且   C n k = n ( n − 1 ) ⋯ ( n − k + 1 ) k !   ,   即   n ( n − 1 ) ⋯ ( n − k + 1 ) = C n k ⋅ k !   ,   故   k ! ∣ n ( n − 1 ) ⋯ ( n − k + 1 )   。 ( 2 )   若 相 继   k   个 整 数 中 有 零 , 则 结 论 显 然 成 立 。 ( 2 )   若 相 继   k   个 整 数 均 为 负 整 数 , 则 可 转 化 为 正 整 数 的 情 形 。 证: \\ \qquad (1)\,若相继\,k\,个整数均为正整数,则当正整数\,n \ge k\,时,注意到组合数 \,C_n^k\,总是一个正整数,且\,C_n^k = {\large n(n-1)\cdots(n-k+1) \over k!}\,,\,即\,n(n-1)\cdots(n-k+1) = C_n^k \cdot k!\,,\,故\,k! \mid n(n-1)\cdots(n-k+1)\,。\\ \qquad (2)\,若相继\,k\,个整数中有零,则结论显然成立。\\ \qquad (2)\,若相继\,k\,个整数均为负整数,则可转化为正整数的情形。 (1)knkCnkCnk=k!n(n1)(nk+1),n(n1)(nk+1)=Cnkk!,k!n(n1)(nk+1)(2)k(2)k

定理三

(带余除法) 若 a , b a,b a,b 是两个整数,且 b > 0 b \gt 0 b>0,则存在唯一 一对整数 q q q r r r,使得 a = b q + r    ( 0 ≤ r < b ) a=bq+r \,\,(0 \le r \lt b) a=bq+r(0r<b)

证 : ( 1 )   存 在 性 : 由 整 数 的 除 法 可 知 , 这 样 的   q , r   是 存 在 的 。 ( 2 )   唯 一 性 : 设 有 两 对 这 样 的 整 数 : q , r   及   q 1 , r 1   , 使 得 : a = b q + r    ( 0 ≤ r < b )    ,    a = b q 1 + r 1    ( 0 ≤ r 1 < b )    则 有 : 0 = b ( q − q 1 ) + r − r 1    由 此 得   b ∣ ( r − r 1 )   ,   但   0 ≤ ∣ r − r 1 ∣ < b   ,   故 得   r − r 1 = 0   ,   即   r = r 1   。   将 此 式 代 入   0 = b ( q − q 1 ) + r − r 1   ,   得   0 = b ( q − q 1 )   ,   又   b ≠ 0   ,   故   q = q 1   。 证:\\ \qquad (1)\,存在性:由整数的除法可知,这样的\,q,r\,是存在的。\\ \qquad (2)\,唯一性:设有两对这样的整数:q,r\,及\,q_1,r_1\,,使得:\\ \qquad \quad a=bq+r \,\,(0 \le r \lt b)\,\,,\,\, a=bq_1+r_1\,\,(0 \le r_1 \lt b) \\ \qquad \quad\,\,则有:0 = b(q-q_1)+r-r_1 \\ \qquad \quad \,\,由此得 \,b \mid (r-r_1)\,,\,但\,0 \le |r-r_1| \lt b\,,\,故得\,r-r_1=0\,,\,即\,r=r_1\,。\,将此式代入\,0 = b(q-q_1)+r-r_1\,,\,得\,0=b(q-q_1)\,,\,又\,b \ne 0\,,\,故\,q=q_1\,。 (1)q,r(2)q,rq1,r1,使a=bq+r(0r<b),a=bq1+r1(0r1<b)0=b(qq1)+rr1b(rr1),0rr1<b,rr1=0,r=r10=b(qq1)+rr1,0=b(qq1),b=0,q=q1

定理四

k ≥ 2 k \ge 2 k2 是整数,则任一正整数 a a a 均可唯一表示成 a = b n k n + b n − 1 k n − 1 + ⋯ + b 1 k + b 0 a=b_nk^n+b_{n-1}k^{n-1}+\cdots+b_1k+b_0 a=bnkn+bn1kn1++b1k+b0 的形式,其中 0 < b n < k   ,   0 ≤ b i < k    ( i = 0 , 1 , ⋯   , n − 1 ) 0 \lt b_n \lt k\,,\, 0 \le b_i \lt k \,\,(i=0,1,\cdots,n-1) 0<bn<k,0bi<k(i=0,1,,n1)

Note : 此为 k k k 进制的形式

例题

  • a , b , n a,b,n a,b,n 为给定的正整数,已知对任意正整数 k ≠ b k \ne b k=b , 都有 ( b − k ) ∣ ( a − k n ) (b-k) \mid (a-k^n) (bk)(akn) , 证明: a = b n a=b^n a=bn
    提 示 : 解 法 一 : 由 因 式 分 解 公 式 : a n − b n = ( a − b ) ( a n − 1 + a n − 2 b + a n − 3 b 2 + ⋯ + b n − 1 ) ( n 为 任 意 正 整 数 ) a n + b n = ( a + b ) ( a n − 1 − a n − 2 b + a n − 3 b 2 − ⋯ + b n − 1 ) ( n 为 奇 数 ) 知 : ( b − k ) ∣ ( b n − k n )   ,   则   ( b − k ) ∣ ( a − b n )   解 法 二 : 适 当 选 取   k   : 先 取   k = a + b   ,   得   a ∣ a − b n   ,   故 : a ∣ b n   ;   再 取   k = b + b n   ,   得   b n ∣ a − b n   ,   故 : b n ∣ a 提示:\\ 解法一:由因式分解公式:\\ \qquad \begin{aligned} a^n-b^n &= (a-b)(a^{n-1}+a^{n-2}b+a^{n-3}b^2+\cdots+b^{n-1}) \quad (n为任意正整数) \\a^n+b^n &=(a+b)(a^{n-1}- a^{n-2}b+a^{n-3}b^2-\cdots+b^{n-1}) \quad (n为奇数)\end{aligned} \\知:(b-k) \mid (b^n-k^n)\,,\,则\,(b-k) \mid (a-b^n)\, \\解法二:适当选取\,k\,:先取\,k=a+b\,,\,得\,a \mid a-b^n\,,\,故:a \mid b^n\,;\,再取\,k=b+b^n\,,\,得\,b^n \mid a-b^n\,,\,故:b^n \mid a anbnan+bn=(ab)(an1+an2b+an3b2++bn1)(n)=(a+b)(an1an2b+an3b2+bn1)(n)(bk)(bnkn),(bk)(abn)kk=a+b,aabn,abn;k=b+bn,bnabn,bna
  • 试证:连续   3   \,3\, 3个奇数中至少有一个是   3   \,3\, 3的倍数。
    提 示 : 设 连 续   3   个 奇 数 为   2 k + 1 , 2 k + 3 , 2 k + 5   ( k 是 正 整 数 ) 。 令   k = 3 q + r   ( 0 ≤ r < 3 )   ,   当   r = 0   时 , 3 ∣ ( 2 k + 3 )   ;   当   r = 1   时 , 3 ∣ ( 2 k + 1 )   ;   当   r = 2   时 , 3 ∣ ( 2 k + 5 )   。 提示:设连续\,3\,个奇数为\,2k+1,2k+3,2k+5\,(k是正整数)。令\,k=3q+r\,(0 \le r \lt 3)\,,\,当\,r=0\,时,3 \mid (2k+3)\,;\,当\,r=1\,时,3 \mid (2k+1)\,;\,当\,r=2\,时,3 \mid (2k+5)\,。 32k+1,2k+3,2k+5(k)k=3q+r(0r<3),r=03(2k+3);r=13(2k+1);r=23(2k+5)
  • a a a 是奇数,试证: 24 ∣ a ( a 2 − 1 ) 24 \mid a(a^2-1) 24a(a21)
    提 示 : 设   a = 2 k + 1   ( k   为 任 意 整 数 ) , 则 : a ( a 2 − 1 ) = ( 2 k + 1 ) [   ( 2 k + 1 ) 2 − 1   ] = 4 ( 2 k + 1 ) k ( k + 1 ) = 4 [   ( k − 1 ) + ( k + 2 )   ] k ( k + 1 ) 提示:设\,a=2k+1\,(k\,为任意整数),则:a(a^2-1)=(2k+1)[\,(2k+1)^2-1\,]=4(2k+1)k(k+1)=4[\,(k-1)+(k+2)\,]k(k+1) a=2k+1(k),a(a21)=(2k+1)[(2k+1)21]=4(2k+1)k(k+1)=4[(k1)+(k+2)]k(k+1)
  • 试证:对任意整数 n n n , 多项式 f ( n ) = 1 3 n 3 + 1 2 n 2 + 1 6 n f(n)={{\large \frac{1}{3}n^3}+{\large 1 \over 2}n^2+{\large \tfrac{1}{6}}n} f(n)=31n3+21n2+61n 总取整数值。
    提 示 : 3 ! ∣ [   ( n + 2 ) ( n + 1 ) n + ( n + 1 ) n ( n − 1 )   ] = 2 n 3 + 3 n 2 + n 提示:3! \mid [\,(n+2)(n+1)n+(n+1)n(n-1)\,]=2n^3+3n^2+n 3![(n+2)(n+1)n+(n+1)n(n1)]=2n3+3n2+n
  • 已知 ( m − p ) ∣ ( m n + p q ) (m-p) \mid (mn+pq) (mp)(mn+pq),试证: ( m − p ) ∣ ( m q + n p ) (m-p) \mid (mq+np) (mp)(mq+np)
    提 示 : ( m − p ) ∣ ( m − p ) ( n − q ) 提示:(m-p) \mid (m-p)(n-q) (mp)(mp)(nq)
  • 试证: 12 ∣ n 4 + 2 n 3 + 11 n 2 + 10 n   ,   n ∈ Z 12 \mid n^4+2n^3+11n^2+10n\,,\,n \in Z 12n4+2n3+11n2+10n,nZ
    提 示 : 2 ( n 4 + 2 n 3 + 11 n 2 + 10 n ) = 2 n ( n + 1 ) ( n + 2 ) ( n + 3 ) − 8 ( n − 1 ) n ( n + 1 ) 提示:2(n^4+2n^3+11n^2+10n)=2n(n+1)(n+2)(n+3)-8(n-1)n(n+1) 2(n4+2n3+11n2+10n)=2n(n+1)(n+2)(n+3)8(n1)n(n+1)
  •   x , y ∈ Z   \,x,y \in Z\, x,yZ   17 ∣ 2 x + 3 y   \,17 \mid 2x+3y\, 172x+3y,试证:   17 ∣ 9 x + 5 y   \,17 \mid 9x+5y\, 179x+5y
    提 示 : 9 ( 2 x + 3 y ) − 2 ( 9 x + 5 y ) = 17 y 提示:9(2x+3y)-2(9x+5y)=17y 9(2x+3y)2(9x+5y)=17y
  •   k   \,k\, k是正奇数,证明:   1 + 2 + ⋯ + 9 ∣ 1 k + 2 k + ⋯ + 9 k   \,1+2+\cdots+9 \mid 1^k+2^k+\cdots+9^k\, 1+2++91k+2k++9k
    提 示 : 设   s = 1 k + 2 k + ⋯ + 9 k   , ( 1 )   2 s = ( 1 k + 9 k ) + ( 2 k + 8 k ) + ⋯ + ( 9 k + 1 k ) = 10 q 1   ( q 1   为 正 整 数 ) ; ( 2 )   2 s = ( 0 k + 9 k ) + ( 1 k + 8 k ) + ⋯ + ( 9 k + 0 k ) = 9 q 2   ( q 2   为 正 整 数 ) 提示:设\,s=1^k+2^k+\cdots+9^k\,,(1)\,2s=(1^k+9^k)+(2^k+8^k)+\cdots+(9^k+1^k)=10q_1\,(q_1\,为正整数);(2)\,2s=(0^k+9^k)+(1^k+8^k)+\cdots+(9^k+0^k)=9q_2\,(q_2\,为正整数) s=1k+2k++9k,(1)2s=(1k+9k)+(2k+8k)++(9k+1k)=10q1(q1);(2)2s=(0k+9k)+(1k+8k)++(9k+0k)=9q2(q2)
  • n ≠ 1 n \ne 1 n=1,试证: ( n − 1 ) ∣ ( n k − 1 ) (n-1) \mid (n^k-1) (n1)(nk1) 的充要条件是 ( n − 1 ) ∣ k (n-1) \mid k (n1)k
    提 示 : n k − 1 = ( n − 1 ) ( n k − 1 + n k − 2 + ⋯ + 1 ) 提示:n^k-1 = (n-1)(n^{k-1}+n^{k-2}+\cdots+1) nk1=(n1)(nk1+nk2++1)
  • n n n 是奇数,试证: 16 ∣ ( n 4 + 4 n 2 + 11 ) 16 \mid (n^4+4n^2+11) 16(n4+4n2+11)
    提 示 : 数 学 归 纳 法 提示:数学归纳法
  • n n n 是正整数,试证: 11 ∣ (   3 n + 1 + 3 n − 1 + 6 2 ( n − 1 )   ) 11 \mid (\,3^{n+1}+3^{n-1}+6^{2(n-1)}\,) 11(3n+1+3n1+62(n1))
    提 示 : 数 学 归 纳 法 提示:数学归纳法
  • a x 0 + b y 0 ax_0+by_0 ax0+by0 是形如 a x + b y ax+by ax+by ( x , y x,y x,y 是任意整数, a , b a,b a,b 是两个不全为零的整数 )的最小正整数,试证: ( a x 0 + b y 0 ) ∣ ( a x + b y ) (ax_0+by_0) \mid (ax+by) (ax0+by0)(ax+by)
    提 示 : 由 a x + b y = ( a x 0 + b y 0 ) q + r    ( 0 ≤ r < a x 0 + b y 0 )    知 : r = a ( x − x 0 q ) + b ( y − y 0 q )   ,   而   0 ≤ r < a x 0 + b y 0   ,   故 : ⋯ 提示:由 ax+by=(ax_0+by_0)q+r\,\,(0 \le r \lt ax_0+by_0) \,\,知:r=a(x-x_0q)+b(y-y_0q)\,,\,而\, 0 \le r \lt ax_0+by_0\,,\,故:\cdots ax+by=(ax0+by0)q+r(0r<ax0+by0)r=a(xx0q)+b(yy0q),0r<ax0+by0,
  • l l l 是一个给定的正整数,若 d ∣ ( a + b + c )   ,   d ∣ ( a l − b l ) d \mid (a+b+c)\,,\, d \mid (a^l-b^l) d(a+b+c),d(albl) d ∣ ( b l − 1 ) d \mid (b^l-1) d(bl1) ,试证:对任意正整数 n n n ,有 d ∣ ( a n l + 1 + b n l + 1 + c ) d \mid (a^{nl+1}+b^{nl+1}+c) d(anl+1+bnl+1+c)
    提 示 : 数 学 归 纳 法 , a l − b l = ( a l − 1 ) − ( b l − 1 )   ,   a ( n + 1 ) l + 1 + b ( n + 1 ) l + 1 + c = ( a l − 1 ) a n l + 1 + ( b l − 1 ) b n l + 1 + a n l + 1 + b n l + 1 + c 提示:数学归纳法,a^l-b^l=(a^l-1)-(b^l-1)\,,\,a^{(n+1)l+1}+b^{(n+1)l+1}+c=(a^l-1)a^{nl+1}+(b^l-1)b^{nl+1}+a^{nl+1}+b^{nl+1}+c albl=(al1)(bl1),a(n+1)l+1+b(n+1)l+1+c=(al1)anl+1+(bl1)bnl+1+anl+1+bnl+1+c
    事 实 上 , 不 需 要 条 件   d ∣ ( a l − b l )   命 题 也 成 立 , 因 为 : ( a n l + 1 + b n l + 1 + c ) ( a l + b l + 1 ) = ( a b ) l ( a ( n − 1 ) l + 1 + b ( n − 1 ) l + 1 + c ) + ( a ( n + 1 ) l + 1 + b ( n + 1 ) l + 1 + c ) + c ( b l − 1 ) ( 1 − a l ) 事实上,不需要条件\,d \mid (a^l-b^l)\,命题也成立,因为:(a^{nl+1}+b^{nl+1}+c)(a^l+b^l+1)=(ab)^l(a^{(n-1)l+1}+b^{(n-1)l+1}+c)+(a^{(n+1)l+1}+b^{(n+1)l+1}+c)+c(b^l-1)(1-a^l) d(albl)(anl+1+bnl+1+c)(al+bl+1)=(ab)l(a(n1)l+1+b(n1)l+1+c)+(a(n+1)l+1+b(n+1)l+1+c)+c(bl1)(1al)
  • 试证: S = 1 + 1 2 + ⋯ + 1 n    ( n > 1 )   S=1+{\large 1 \over 2}+\cdots+{\large 1 \over n}\,\,(n\gt 1)\, S=1+21++n1(n>1)不是整数。
    提 示 : 设   k   是 满 足 条 件   2 k ≤ n   的 最 大 整 数 , P   是 所 有 不 大 于   n   的 正 奇 数 的 乘 积 , 则   2 k − 1 P S = 2 k − 1 P ( 1 + 1 2 + ⋯ + 1 n )   的 展 开 式 中 , 除 了   2 k − 1 P 1 2 k   外 , 其 余 各 项 均 为 整 数 , 所 以   2 k − 1 P S   不 是 整 数 , 故   S   不 是 整 数 。 提示:设 \,k\,是满足条件\,2^k \le n\,的最大整数,P\,是所有不大于\,n\,的正奇数的乘积,则\,2^{k-1}PS=2^{k-1}P(1+{\large1 \over 2}+\cdots+{\large 1 \over n})\,的展开式中,除了\,2^{k-1}P{\large 1 \over 2^k}\,外,其余各项均为整数,所以\,2^{k-1}PS\,不是整数,故\,S\,不是整数。 k2knPn2k1PS=2k1P(1+21++n1)2k1P2k12k1PSS
  • 试证: S = 1 3 + 1 5 + ⋯ + 1 2 n + 1    ( n ≥ 1 )   S={\large 1 \over 3}+{\large 1 \over 5}+\cdots+{\large 1 \over 2n+1}\,\,(n \ge 1)\, S=31+51++2n+11(n1) 不是整数。
    提 示 : 仿 造 上 一 题 的 思 想 , 设   k   是 满 足 条 件   3 k ≤ 2 n + 1   的 最 大 整 数 , P   是 所 有 不 大 于   2 n + 1   的 除 了 3 以 及 3 的 倍 数 之 外 的 正 奇 数 的 乘 积 , 则 有 : 3 k P S = 3 k − 1 + 3 k P 5 + ⋯ + P + ⋯ + 3 k P 2 n + 1   ,   如 果 S 为 整 数 , 那 么 有   3 ∣ P   ,   但 这 与   P   的 设 定 矛 盾 , 所 以   S   不 是 整 数 。 提示:仿造上一题的思想,设 \,k\,是满足条件\,3^k \le 2n+1\,的最大整数,P\,是所有不大于\,2n+1\,的除了3以及3的倍数之外的正奇数的乘积,则有:3^kPS=3^{k-1}+{\large 3^kP \over 5}+\cdots+P+\cdots+{\large 3^{k}P \over 2n+1}\,,\,如果S为整数,那么有\,3 \mid P\,,\,但这与\,P\,的设定矛盾,所以\,S\,不是整数。 仿k3k2n+1P2n+1333kPS=3k1+53kP++P++2n+13kP,S3P,PS
  • n n n 是正整数,试证:存在唯一 一对整数 k , l k,l k,l,使得 n = k ( k − 1 ) 2 + l    ( 0 ≤ l < k )   n={\large k(k-1) \over 2}+l \,\,(0 \le l \lt k)\, n=2k(k1)+l(0l<k)
    提 示 :   存 在 性 : 由 题 意 可 知 , k ( k − 1 ) 2 ≤ n < k ( k − 1 ) 2 + k = k ( k + 1 ) 2   ,   用 一 元 二 次 方 程 求 根 公 式 + 一 元 二 次 函 数 的 性 质 , 解 得 : − 1 + 1 + 8 n 2 < k ≤ 1 + 1 + 8 n 2   ,   即   k = [ 1 + 1 + 8 n 2 ]   ,   [ x ] 表 示 不 超 过   x   的 最 大 整 数 。   唯 一 性 : k = [ x ] 自 带 唯 一 性   ,   k 一 定 , 则   l   跟 着 也 一 定 。 提示:\\ \quad\,存在性:由题意可知,{\large k(k-1) \over 2} \le n \lt {\large k(k-1) \over 2}+k={\large k(k+1) \over 2}\,,\,用一元二次方程求根公式+一元二次函数的性质,解得:{\large -1+\sqrt[]{1+8n} \over 2} \lt k \le {\large 1+\sqrt{1+8n} \over 2}\,,\,即\,k={\big[}{\large 1+\sqrt{1+8n} \over 2} {\big]}\,,\,{\big[}x{\big]}表示不超过\,x\,的最大整数。\\ \quad\,唯一性:k={\big[}x{\big]}自带唯一性\,,\,k一定,则\,l\,跟着也一定。 2k(k1)n<2k(k1)+k=2k(k+1),+21+1+8n <k21+1+8n ,k=[21+1+8n ],[x]xk=[x],kl

质数与合数

若正整数 p p p 恰好只有 1 1 1 及本身 p p p 两个正因数,则称 p p p质数(也称 素数),若正整数 n n n 的正因数多余 2 2 2 个,则称 n n n合数

定理

定理1: 质 数 有 无 穷 多 个 。 质数有无穷多个。

反 证 法 。 假 设 质 数 的 个 数 有 限 , 列 举 全 体 质 数 如 : p 1 , p 2 , ⋯   , p k   ,   令   N = p 1 p 2 ⋯ p k + 1   ,   如 果   p i ∣ N   ,   则 由   p i ∣ p 1 p 2 ⋯ p k   ,   知   p i ∣ 1   ,   矛 盾 。 因 此   p i ∤ N   ,   则 N 有 不 同 于   p 1 , p 2 , ⋯   , p k   的 质 因 数 , 这 与   p 1 , p 2 , ⋯   , p k   是 全 体 质 数 的 假 定 矛 盾 。 反证法。假设质数的个数有限,列举全体质数如:p_1,p_2,\cdots,p_k\,,\,令\,N=p_1p_2\cdots p_k+1\,,\,如果\,p_i \mid N\,,\,则由\,p_i \mid p_1p_2\cdots p_k\,,\,知\,p_i \mid 1\,,\,矛盾。因此\,p_i \nmid N\,,\,则N有不同于\,p_1,p_2,\cdots,p_k\,的质因数,这与\,p_1,p_2,\cdots,p_k\,是全体质数的假定矛盾。 p1,p2,,pk,N=p1p2pk+1,piN,pip1p2pk,pi1,piN,Np1,p2,,pkp1,p2,,pk

定理2: 当   n > 2   时 , 在   n   与   n !   之 间 一 定 有 一 个 质 数 。 当\,n \gt 2\,时,在\,n\,与\,n!\,之间一定有一个质数。 n>2nn!

证 : 设 不 大 于   n   的 质 数 为   p 1 , p 2 , ⋯   , p k   ,   并 令   N = p 1 p 2 ⋯ p k − 1   ,   一 方 面 , 由 于   n > 2   ,   所 以   N > 4   。 又   N 有 一 个 不 同 于   p 1 , p 2 , ⋯   , p k   的 质 因 数   p   ,   所 以   p > n   。 另 一 方 面 , p ≤ N ≤ n ! − 1 < n !   ,   故   n < p < n !   。 证:设不大于\,n\,的质数为\,p_1,p_2,\cdots,p_k\,,\,并令\,N=p_1p_2\cdots p_k-1\,,\,一方面,由于\,n \gt 2\,,\,所以\,N \gt 4\,。又\,N有一个不同于\,p_1,p_2,\cdots,p_k\,的质因数\,p\,,\,所以\,p \gt n\,。另一方面,p \le N \le n! - 1 \lt n!\,,\,故\,n \lt p \lt n!\,。 np1,p2,,pk,N=p1p2pk1,n>2,N>4Np1,p2,,pkp,p>npNn!1<n!,n<p<n!

定理3:(贝特朗定理) 对 任 一 实 数 x ≥ 1 , 在 区 间 [   x , 2 x   ] 上 必 有 一 质 数 。 对任一实数x \ge1,在区间[\,x,2x\,]上必有一质数。 x1[x,2x]

定理4:不存在次数 m ≥ 1 m \ge 1 m1 的一元整系数多项式 f ( n ) = a m n m + a m − 1 n m − 1 + ⋯ + a 1 n + a 0 f(n)=a_mn^m+a_{m-1}n^{m-1}+\cdots+a_1n+a_0 f(n)=amnm+am1nm1++a1n+a0 使得对于任意的正整数 n   ,   f ( n ) n\,,\,f(n) n,f(n) 都是质数。

证 : 若 对 某 个 整 数   n = b   ,   f ( b ) = a m b m + a m − 1 b m − 1 + ⋯ + a 1 b + a 0 = p   是 质 数 , 当   n = b + t p   ( t 为 任 意 整 数 )   时 , f ( b + t p ) = ( a m b m + a m − 1 b m − 1 + ⋯ + a 1 b + a 0 ) + k p = p ( 1 + k )   ,   k   为 某 一 整 数 , 知   f ( b + t p )   是 合 数 。 证:若对某个整数\,n=b\,,\,f(b)=a_mb^m+a_{m-1}b^{m-1}+\cdots+a_1b+a_0=p\,是质数,当\,n=b+tp\,(t为任意整数)\,时,f(b+tp)=(a_mb^m+a_{m-1}b^{m-1}+\cdots+a_1b+a_0)+kp=p(1+k)\,,\,k\,为某一整数,知\,f(b+tp)\,是合数。 n=b,f(b)=ambm+am1bm1++a1b+a0=pn=b+tp(t)f(b+tp)=(ambm+am1bm1++a1b+a0)+kp=p(1+k),kf(b+tp)

一些例题或结论

  • 对任意给定的正整数   K   \,K\, K,必有   K   \,K\, K个连续正整数都是合数。
    证 : 构 造   K   个 连 续 正 整 数 : ( K + 1 ) ! + 2   ,   ( K + 1 ) ! + 3   ,   ⋯   ,   ( K + 1 ) ! + i   ,   ( K + 1 ) ! + ( K + 1 )   ,   显 然 对   2 ≤ i ≤ K + 1   ,   有   i ∣ [   ( K + 1 ) ! + i   ]   证:构造\,K\,个连续正整数:(K+1)!+2\,,\,(K+1)!+3\,,\,\cdots\,,\,(K+1)!+i\,,\,(K+1)!+(K+1)\,,\,显然对\,2 \le i \le K+1\,,\,有\,i \mid [\,(K+1)!+i\,]\, K(K+1)!+2,(K+1)!+3,,(K+1)!+i,(K+1)!+(K+1),2iK+1,i[(K+1)!+i]
  •   p   \,p\, p是大于   3   \,3\, 3的质数,则   p   \,p\, p必为   6 k ± 1    ( k 为 正 整 数 ) \,6k \pm 1\,\,(k为正整数) 6k±1(k)的形式,但反过来则不一定成立。
    提 示 : 反 过 来 时 , 设   k = 20   , 则   6 k + 1 = 121 = 1 1 2   ;   6 k − 1 = 119 = 17 × 7   。 提示:反过来时,设\,k=20\,,则\,6k+1=121=11^2\,;\,6k-1=119=17 \times 7\,。 k=20,6k+1=121=112;6k1=119=17×7
  •   p   \,p\, p是大于   3   \,3\, 3的质数,则:   p 2   \,p^2\, p2   12   \,12\, 12除所得的余数必为   1   \,1\, 1
    提 示 : p 2 = ( 6 k ± 1 ) 2 = 12 ( 3 k 2 ± k ) + 1 提示:p^2=(6k \pm 1)^2=12(3k^2 \pm k)+1 p2=(6k±1)2=12(3k2±k)+1
  •   p ≥ 5   \,p \ge 5\, p5,若 p p p 2 p + 1 2p+1 2p+1 均为质数,则: 4 p + 1 4p+1 4p+1 必为合数。
    提 示 : p   只 能 是   6 k − 1   (   k   为 正 整 数 ) 的 形 式 提示:p\,只能是\,6k-1\,(\,k\,为正整数)的形式 p6k1(k)
  • n > 1 n \gt 1 n>1 a n − 1 a^n-1 an1 为质数,试证: a = 2 a=2 a=2 n n n 为质数。
    证 : 反 证 法 。 假 设   a > 2   ,   因 为   n > 1   ,   故   1 < a − 1 < a n − 1   ,   且   a n − 1 = ( a − 1 ) ( a n − 1 + a n − 2 + ⋯ + a + 1 )   ,   从 而   a n − 1   有 真 因 数   a − 1   ,   即   a n − 1   不 是 质 数 , 矛 盾 , 则   a = 2   。 假 设   n   是 合 数 , 即   n = k l   ( 1 < k < n )   ,   有 : 1 < 2 k − 1 < 2 n − 1   ,   由 公 比   q = 2   的 等 比 数 列 求 和 公 式 的 性 质 , 有 : ( 2 k − 1 ) ∣ ( 2 n − 1 )   ,   则   2 n − 1   也 不 是 质 数 。 因 此 ,   n   为 质 数 。 证:反证法。假设\,a\gt 2\,,\,因为\,n \gt 1\,,\,故 \,1 \lt a-1 \lt a^n-1\,,\,且\,a^n-1=(a-1)(a^{n-1}+a^{n-2}+\cdots+a+1)\,,\,从而\,a^n-1\,有真因数\,a-1\,,\,即\,a^n-1\,不是质数,矛盾,则\,a=2\,。假设\,n\,是合数,即\,n=kl\,(1 \lt k \lt n)\,,\,有:1 \lt 2^k-1 \lt 2^n-1\,,\,由公比\,q=2\,的等比数列求和公式的性质,有:(2^k-1) \mid (2^n-1)\,,\,则\,2^n-1\,也不是质数。因此,\,n\,为质数。 a>2,n>1,1<a1<an1,an1=(a1)(an1+an2++a+1),an1a1,an1a=2nn=kl(1<k<n),1<2k1<2n1,q=2(2k1)(2n1),2n1n
  •   n > 1   \,n \gt 1\, n>1,则   n   \,n\, n的大于   1   \,1\, 1的最小正因数   p   \,p\, p一定是质数。
    提 示 : 反 证 法 。 若   p   不 是 质 数 , 则   p   除   1   与 本 身 外 还 有 一 真 因 数   q   , 满 足   1 < q < p   且   q ∣ n   , 矛 盾 。 提示:反证法。若\,p\,不是质数,则\,p\,除\,1\,与本身外还有一真因数\,q\,,满足\,1 \lt q \lt p\,且\,q \mid n\,,矛盾。 pp1q,1<q<pqn
  •   n > 1   \,n \gt 1\, n>1,若所有   ≤ n   \,\le \sqrt{n}\, n 的质数都不能整除   n   \,n\, n,则   n   \,n\, n一定是质数。
    证 : 转 化 为 证 明 逆 否 命 题 “   n   如 果 是 合 数 , 则   n   至 少 能 被 一 个 ≤ n   的 质 数 整 除 ” 。 设   p   是   n   的 除   1   之 外 的 最 小 正 因 数 , 则 有   n = p k   ( 1 < p ≤ k )   , 则   n ≥ p 2 > 1   , 即   1 < p ≤ n   , 所 以 逆 否 命 题 成 立 , 故 原 命 题 成 立 。 证:转化为证明逆否命题“\,n\,如果是合数,则\,n\,至少能被一个\le \sqrt{n}\,的质数整除”。设\,p\,是\,n\,的除\,1\,之外的最小正因数,则有\,n=pk\,(1 \lt p \le k)\,,则\,n \ge p^2 \gt 1\,,即\,1 \lt p \le \sqrt{n}\,,所以逆否命题成立,故原命题成立。 nnn pn1n=pk(1<pk),np2>1,1<pn ,
  • 如果对于所有   ≤ n k   \, \le \sqrt[k]{n}\, kn (   k   \,k\, k是整数,且   k ≥ 2   \,k \ge 2\, k2)的质数   p , n   \,p,n\, p,n   n   \,n\, n不能被   p   \,p\, p整除,证明:   n   \,n\, n至多为   k − 1   \,k-1\, k1个质数(允许相同)的乘积。
    证 : 转 化 为 逆 否 命 题 “   n   至 少 是   k   个 质 数 ( 允 许 相 同 ) 的 乘 积 , 则 至 少 存 在 一 个 ≤ n k 的 质 数 能 整 除   n   ” 证 明 。 假 设   p 1 p 2 ⋯ p n ∣ n   , 其 中   p 1 ≤ p 2 ≤ ⋯ ≤ p k   都 是 质 数 , 则   p 1 k ≤ n   , 即   p 1 ≤ n k   , 故 逆 否 命 题 成 立 , 则 原 命 题 成 立 。 证:转化为逆否命题“\,n\,至少是\,k\,个质数(允许相同)的乘积,则至少存在一个\le \sqrt[k]{n}的质数能整除\,n\,”证明。假设\,p_1p_2\cdots p_n \mid n\,,其中\,p_1 \le p_2 \le \cdots \le p_k\,都是质数,则\,p_1^k \le n\,,即\,p_1 \le \sqrt[k]{n}\,,故逆否命题成立,则原命题成立。 nk()kn np1p2pnn,p1p2pkp1kn,p1kn ,
  •   p   \,p\, p是合数   n   \,n\, n的最小质因数,则:若   p > n 3   , 则   n p   \,p \gt \sqrt[3]{n}\,,则\,\dfrac{n}{p}\, p>3n ,pn是质数。
    证 : 假 设   n p   不 是 质 数 , 则 有   n p = p 1 k   , 这 里   p 1   为   n p   的 最 小 正 因 数 , 为 质 数 , 则   k ≥ p 1   , 则   p ≤ p 1 ≤ k   , 得   n = p p 1 k ≥ p 3   , 即   p ≤ n 3   , 但   p > n 3   , 故 假 设 不 成 立 , 于 是 命 题 成 立 。 证:假设\,\dfrac{n}{p}\,不是质数,则有\,\dfrac{n}{p}=p_1k\,,这里\,p_1\,为\,\dfrac{n}{p}\,的最小正因数,为质数,则\,k \ge p_1\,,则\,p \le p_1 \le k\,,得\,n=pp_1k \ge p^3\,,即\,p \le \sqrt[3]{n}\,,但\,p \gt \sqrt[3]{n}\,,故假设不成立,于是命题成立。 pnpn=p1k,p1pnkp1,pp1k,n=pp1kp3,p3n ,p>3n ,
  •   n   \,n\, n为大于   5   \,5\, 5的奇数,且存在互质的整数   a   \,a\, a   b   \,b\, b,使得   a − b = n   \,a-b=n\, ab=n   a + b = p 1 p 2 ⋯ p k   \,a+b=p_1p_2\cdots p_k\, a+b=p1p2pk,其中   p 1 , p 2 , ⋯   , p k   \,p_1,p_2,\cdots,p_k\, p1,p2,,pk   ≤ n   \,\le \sqrt{n}\, n 的全体奇质数,试证:   n   \,n\, n为质数。
    提 示 : 由 于   ( a + b , a ) = ( b , a ) = 1   则   ( a − b , a + b ) = ( a + b , 2 a ) = ( a + b , 2 ) = 1   或   2 提示:由于\,(a+b,a)=(b,a)=1\,则\,(a-b,a+b)=(a+b,2a)=(a+b,2)=1\,或\,2 (a+b,a)=(b,a)=1(ab,a+b)=(a+b,2a)=(a+b,2)=12 其 中   ( a , b )   为   a , b   的 最 大 公 因 数 其中\,(a,b)\,为\,a,b\,的最大公因数 (a,b)a,b
  • 若质数   p   \,p\, p除以   30   \,30\, 30后的余数   r ≠ 1   \,r \ne 1\, r=1,试证:   r   \,r\, r一定是质数。
    提 示 : 设   p = 30 k + r   ( 1 < r < 30 ) 提示:设\,p=30k+r\,(1 \lt r \lt 30) p=30k+r(1<r<30)
  • 若质数   p ≥ 7   \,p \ge 7\, p7,试证:   p 2   \,p^2\, p2除以   30   \,30\, 30所得的余数必为   1   \,1\, 1   19   \,19\, 19
    提 示 : 参 考 上 一 题 提示:参考上一题
  • 2 2 5 + 1 2^{2^5}+1 225+1 是合数
    证 : 设   a = 2 7 , b = 5   ,   则   a − b 3 = 3   ,   1 + a b − b 4 = 1 + ( a − b 3 ) b = 1 + 3 b = 2 4   ,   于 是   2 2 5 + 1 = ( 2 a ) 4 + 1 = 2 4 ⋅ a 4 + 1 = ( 1 + a b − b 4 ) a 4 + 1 = ( 1 + a b ) a 4 + [   1 − ( − a b ) 4   ] = ( 1 + a b ) [   a 4 + ( − a b ) 3 + ( − a b ) 2 + ( − a b ) + 1   ]   ,   所 以   ( 1 + a b ) ∣ 2 2 5 + 1   。 证:设\,a=2^7,b=5\,,\,则\,a-b^3=3\,,\,1+ab-b^4=1+(a-b^3)b=1+3b=2^4\,,\,于是\,2^{2^5}+1=(2a)^4+1=2^4 \cdot a^4+1=(1+ab-b^4)a^4+1=(1+ab)a^4+[\,1-(-ab)^4\,]=(1+ab)[\,a^4+(-ab)^3+(-ab)^2+(-ab)+1\,]\,,\,所以\,(1+ab) \mid 2^{2^5}+1\,。 a=27,b=5,ab3=3,1+abb4=1+(ab3)b=1+3b=24,225+1=(2a)4+1=24a4+1=(1+abb4)a4+1=(1+ab)a4+[1(ab)4]=(1+ab)[a4+(ab)3+(ab)2+(ab)+1],(1+ab)225+1
  • m m m 为正整数,且 2 m + 1 2^m+1 2m+1 为质数,则: m = 2 n m=2^n m=2n
    提 示 : 当   m   为 奇 数 时 ,   a m + 1 = a m − ( − 1 ) m = ( a + 1 ) [   a m − 1 + a m − 2 ( − 1 ) + a m − 3 ( − 1 ) 2 + ⋯ + a ( − 1 ) m − 2 + 1   ]   。 提示:当\,m\,为奇数时,\,a^m+1=a^m-(-1)^m=(a+1)[\,a^{m-1}+a^{m-2}(-1)+a^{m-3}(-1)^2+\cdots+a(-1)^{m-2}+1\,]\,。 mam+1=am(1)m=(a+1)[am1+am2(1)+am3(1)2++a(1)m2+1]
  • p p p 为奇质数,则有: 1 + 1 2 + 1 3 + ⋯ + 1 p − 1 = a b 1+{\large 1 \over 2}+{\large1 \over 3}+\cdots+{\large 1 \over p-1}={\large a \over b} 1+21+31++p11=ba 的分子 a a a p p p 的倍数。
    证 : 因 为 : a b = 1 + 1 2 + 1 3 + ⋯ + 1 p − 1 ( 1 ) a b = 1 p − 1 + 1 p − 2 + 1 p − 3 + ⋯ + 1 ( 2 ) ( 1 ) + ( 2 )   ,   得 : 2 a b = p p − 1 + p 2 ( p − 2 ) + p 3 ( p − 3 ) + ⋯ + p p − 1 有 : p ∣ 2 a ⋅ ( p − 1 ) !   ,   又   p   为 奇 质 数   ,   得 : p ∣ a 证:\\因为: \\ \qquad \begin{aligned}{a \over b} &= 1+{ 1 \over 2}+{1 \over 3}+\cdots+{ 1 \over p-1} \quad (1)\\ {a \over b} &= {1 \over p-1}+{1 \over p-2}+{1 \over p-3}+\cdots+1 \quad (2)\end{aligned} \\(1)+(2)\,,\,得:\\ \qquad \begin{aligned} {2a \over b}={p \over p-1}+{p \over 2(p-2)}+{p \over 3(p-3)}+\dots+{p \over p-1} \end{aligned} \\有:p \mid 2a \cdot (p-1)!\,,\,又\,p\,为奇质数\,,\,得:p \mid a baba=1+21+31++p11(1)=p11+p21+p31++1(2)(1)+(2),b2a=p1p+2(p2)p+3(p3)p++p1pp2a(p1)!,p,pa
  • p p p 为奇质数,则有: 1 k + 1 k + 1 + 1 k + 2 + ⋯ + 1 p − k = a b {\large 1 \over k}+{\large 1 \over k+1}+{\large1 \over k+2}+\cdots+{\large 1 \over p-k}={\large a \over b} k1+k+11+k+21++pk1=ba 的分子 a a a p p p 的倍数。
    提 示 : 参 考 上 一 结 论 的 解 题 思 想 : 首 尾 重 排 相 加 提示:参考上一结论的解题思想:首尾重排相加
  •   p   \,p\, p是质数,有一个自然数   n > 1   \,n \gt 1\, n>1,满足   n ∣ ( p − 1 )   ,   p ∣ ( n 3 − 1 )   \,n \mid (p-1)\,,\,p \mid (n^3-1)\, n(p1),p(n31),证明:   4 p − 3   \,4p-3\, 4p3是平方数。
    证 : 由 题 意 知 ,   n < p   ,   p ∣ ( n − 1 ) ( n 2 + n + 1 )   ,   p ∤ n − 1   , 则   p ∣ n 2 + n + 1   , 设   p = q n + 1   ,   q   为 自 然 数 , 又 设   n 2 + n + 1 = h p   , 则   n 2 + n + 1 = h ( q n + 1 )   , 得   n ∣ ( h − 1 )   , 设   h − 1 = t n   , 则   n 2 + n = ( t n + 1 ) ( q n + 1 ) − 1 = t q n 2 + ( t + q ) n   , 在   t ≥ 1   时 , 上 式 右 边 大 于 左 边 , 所 以   t = 0   ,   q = n + 1   ,   h = 1   ,   p = n 2 + n + 1   ,   4 p − 3 = 4 ( n 2 + n + 1 ) − 3 = ( 2 n + 1 ) 2   , 命 题 得 证 。 证:由题意知,\,n \lt p\,,\,p \mid (n-1)(n^2+n+1)\,,\,p \nmid n-1\,,则\,p \mid n^2+n+1\,,设\,p=qn+1\,,\,q\,为自然数,又设\,n^2+n+1=hp\,,则\,n^2+n+1 = h(qn+1)\,,得\,n \mid (h-1)\,,设\,h-1=tn\,,则\,n^2+n=(tn+1)(qn+1)-1=tqn^2+(t+q)n\,,在\,t \ge 1\,时,上式右边大于左边,所以\,t=0\,,\,q=n+1\,,\,h=1\,,\,p=n^2+n+1\,,\,4p-3=4(n^2+n+1)-3=(2n+1)^2\,,命题得证。 ,n<p,p(n1)(n2+n+1),pn1,pn2+n+1,p=qn+1,q,n2+n+1=hp,n2+n+1=h(qn+1),n(h1),h1=tn,n2+n=(tn+1)(qn+1)1=tqn2+(t+q)n,t1,,t=0,q=n+1,h=1,p=n2+n+1,4p3=4(n2+n+1)3=(2n+1)2,

End

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值