动态规划之使用最小花费爬楼梯【LeetCode】

动态规划之使用最小花费爬楼梯

LCR 088. 使用最小花费爬楼梯

LCR 088. 使用最小花费爬楼梯

在这里插入图片描述

解法1

状态表示这是最重要的):dp[i]表示以第i级台阶为楼层顶部,到达第i层台阶的最低花费。
状态转移方程最难的):dp[i] = min(dp[i-1]+cost[i-1], dp[i-2]+cost[i-2]);
初始化:根据题意,我们需要知道到达第1层和第2层台阶的最低花费,第1层和第2层台阶的最低花费为0,并且vector会自动将所有元素初始化为0,所以可以忽略这一步。
填表顺序:当我们求解当前问题时,需要知道所需较小子问题的解,这就需要我们先求解得到较小子问题的解,这就是填表顺序。我们这道解法是从左向右填表。
返回值n = cost.size(); return dp[n];

代码实现:

class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        int n= cost.size();
        vector<int> dp(n+1);
        int i = 0;
        for(i = 2; i <= n; i++)
        {
            dp[i] = min(dp[i-1]+cost[i-1], dp[i-2]+cost[i-2]);
        }

        return dp[n];
    }
};

解法2

状态表示这是最重要的):dp[i]表示从第i级台阶开始,到达楼层顶部的最低花费。
状态转移方程最难的):dp[i] = cost[i]+min(dp[i+1], dp[i+2]);
初始化n = cost.size(); dp[n-1]=cost[n-1], dp[n-2]=cost[n-2];
填表顺序:当我们求解当前问题时,需要知道所需较小子问题的解,这就需要我们先求解得到较小子问题的解,这就是填表顺序。我们这道解法是从右向左填表。
返回值return min(dp[0], dp[1]);

代码实现:

class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        int n = cost.size();
        vector<int> dp(n);
        dp[n-1]=cost[n-1], dp[n-2]=cost[n-2];
        for(int i = n-3; i >= 0; i--)
        {
            dp[i] = cost[i]+min(dp[i+1], dp[i+2]);
        }

        return min(dp[0], dp[1]);
    }
};

     😄 创作不易,你的点赞和关注都是对我莫大的鼓励,再次感谢您的观看😄

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

112233123hd

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值