
设A,B,C表示三个随机事件,试将下列事件用A,B,C表示出来
(1)A 发生,且B 与C至少有一个发生
(2)A与B发生,而C不发生;
(3)A,B,C中恰有一个发生;
(4) A,B,C中至少有两个发生;
(5) A,B,C中至多有两个发生;
(6) A, B,C中不多于一个发生.
我的答案:
一、信息
由于该题涉及到了事件间的关系,故根据1.2.2中事件间的关系实际上是集合间关系的运算来表示。
第一题,A必定发生,BC中至少有一个发生
第二题,A和B必定发生,但是C必定不发生
第三题,A或B或C其中一个发生
第四题,A和B和C最少都有两个发生了,隐含ABC都有可能发生
第五题,A和B和C最多有两个发生,隐含着0,1,2;
第六题,A和B和C中其中一个发生
二、分析
没分析就做了😱,主要是题目之间的关系。
(1)A∪(B∪C)❌
(2)AB~C👍
(3)~ABC∪A~BC∪AB~C❌
(4)ABC∪~ABC∪A~BC∪AB~C这里我看不懂标准答案为什么少了ABC
(5)~A~B~C∪~ABC∪A~BC∪AB~C❌没想到可以运用这种方法解决
(6)~ABC∪A~BC∪AB~C❌
正确答案:

反思:
学到了什么?
首先描述事件之间的关系可以用集合间的运算来表示,提供给我一种新的数学描述新问题的方法
其次在考虑问题如何用集合间运算的思路时扩展了一条新的思路,就是对立事件法或者颠倒对象法(转换难度,非此即彼,化繁为简的思想),简单的说就是看当前问题复杂且情况占据大多数的时候运用颠倒研究对象来达到化繁为简的思想。
以后如果遇到多道题目相似但是不同的可以分析分析它们之间的关系
犯了什么错误?
没有仔细读题和思考符号的意义,像第三题我就因为记错了~是否定的意思以为他是发生的意思
没有分析就做题,发现不了6和4的联系,并从中推理分析不出东西。