1.1.1 随机试验

思维导图:

1.随机试验
把对某种随机现象的一次观察、观测或测量称为一个试验。如果这个试验在相同的条件
下可以重复进行,且每次试验的结果事前不可预知,则称此试验为随机试验,也简称试验,
记为E。注:以后所提到的试验均指随机试验。
即对随机现象的研究是通过随机试验来进行的,概率论中把满足以下特点的试验
称为随机试验:
(1)可以在相同条件下重复进行;
比如我们平时同学聚会或者出去玩的掷骰子游戏
相同条件是什么意思?
在随机试验中,"相同条件"是指在不同试验中保持相同的实验条件。这意味着每次重复试验时,所有影响试验结果的因素都应该保持不变。这样做的目的是为了确保不同试验之间的比较具有可靠性和可重复性。
相同条件的意义在于消除可能导致结果差异的干扰因素。通过控制相同的实验条件,可以更好地评估特定因素对试验结果的影响,而不会被其他因素所干扰。这种方法可以增加试验结果的可靠性,并使得结果更具有统计意义。
例如,假设你正在进行一个药物疗效的随机试验。为了确保相同条件,你需要保持药物剂量、给药时间、病人的选取标准等实验条件在不同的试验中保持一致。只有这样,你才能更准确地评估药物对疾病的治疗效果。
总而言之,相同条件意味着在随机试验中,需要控制和保持所有可能影响试验结果的因素不变,以确保试验结果的准确性和可靠性。

(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(疑问?为什么E2其实某城市某个月内的交通事故发生的次数是未知的,所有可能到的结果是如何的到的呢?)

2023/5/15 补充
对黄色字体的解答:
在随机试验的定义中,"每次试验可能结果不止一个"指的是在进行一次试验时,可能会出现多种不同的结果。这意味着试验的结果是不确定的,具有一定的随机性。
对于一个城市发生交通事故的数量来说,它可以被视为一个随机试验。在这个试验中,每一次观察或记录都可以看作是一次试验,而每次试验的结果是城市在特定时间段内发生的交通事故数量。
然而,试验的每个结果并不是在试验开始之前就能确定的。相反,试验的结果是在试验进行时或试验结束时才能获得。因此,在定义中提到的"能事先明确试验的所有可能结果"并不是指试验开始前就能列举出所有可能的具体结果,而是指试验的结果属于一个已知的结果集合,尽管在具体试验之前我们可能无法确定试验将产生的具体结果是哪些。
对于城市交通事故数量的随机试验,试验的结果可能是0个事故、1个事故、2个事故,以及更多的事故。虽然我们无法在试验开始之前明确知道具体的事故数量,但我们可以将所有可能的结果作为一个结果集合,即{0, 1, 2, ...}。
综上所述,一个城市发生交通事故数量的随机试验满足每次试验可能结果不止一个的条件,而试验的所有可能结果是一个无限的结果集合,其中具体的结果需要在试验进行时或试验结束时才能确定。
(3)进行一次试验之前不能确定哪一个结果会出现
随机试验举例
例1.1
E1:掷一颗骰子,观察所掷的点数是几;
E2:观察某城市某个月内交通事故发生的次数:
Bs:对某只灯泡做试验,观察其使用寿命;
Es:对某只灯泡做试验,观察其使用寿命是否小
于200小时。
Es:抛一枚硬币,观察正面、反面出现的情況
统计规律性:
在大量重复试验中所呈现出的固有的规律性称为统计规律性
1.1.2 样本空间
I.样本空间
对于随机试验,尽管在每次试验之前不能预知试验结果,但试验的所有可能结果所构成的集合却是已知的。称试验所有可能结果所构成的集合为样本空间,记为2。样本空间的元素,即随机试验的单个结果称为样本点。若以二表示试验E;的样本空间,i-1,2,3,4,5则:掷一颗骰子,观察所掷的点数是几,
21= {1, 2, 3, 4, 5, 6}:
定义 1.1
随机试验的一切可能的基本结果组成的集合称为样本空间,记为 Ω={w},其中(表示基本结果,又称为样本点.研究随机现象首先要了解它的样本空间.
例1.2

关于样本空间的两点说明:
(1样本空间中的元素可以是数也可以不是数;
(2)样本空间中的样本点可以是有限多个,也可以是无限多个。仅含两个样本点
的样本空间是最简单的样本空间
