3.2.4 解对称正定矩阵方程组的平方根法

在工程技术问题中,常常需要求解系数矩阵是对称正定矩阵的线性代数方程组。对于这类方程组,若利用矩阵三角分解法求解,就可得到一个有效法平方根法,其设计原理。

定理3 若A为对称正定矩阵,则存在唯一分解

A=~L~L^(T) (3.28)

其中~L是对角元为正的下三角形矩阵(对称正定矩阵的这种分解称为楚列斯基(Cholesky)分解)。

证明 由矩阵三角分解基本原理,存在唯一杜利特尔分解A=LU.若以Ak,Lk,Uk,依次表示矩阵A,L,U的k阶顺序主子阵,则

det A = det (Lk,Uk) = det Lk • det Uk,

u11u2……ukk (k =1,2,--. , n).

因A 对称正定,det A, >0(4=1,2,•,几),从而飛u >0(i=1,2,..,n).手是A 又可进一步分解为 A=LDU。,其中

因为A 是对称矩阵,又有

A=A'=(LDUO'=UE(DL')显然,U。是单位下三角形矩阵,DL”是上三角形矩阵. 由杜利特尔分解的唯一性知U。二L,故A=LDL"I另一方面,由山i>0知D又可分解成D=D'D'2,其中VuID12Vuzz53如令之=1D',则之 是对角元为正的下三角形短阵,且由(3.29)式可得分解式(3.28)• 由从上述分解过程可以看出,这种分解是唯一的。下面导出实现分解A=记元°的递推算式.设美油

𤠒𡒗𢝵 𥮳食爺

采用自左向右逐列计算待定数l,的计算过程.由矩阵乘法规则与相等条件,依次

可得到确定立 的第一列元的算式

4n

=Nan ,ln =as/ lni

(¡=2.3..

,几)

青Y=送(3.30)

以及在算出亡的第—列至第;-1列元后确定第i列元的算式 !

號武手,依湖

16-(0-82)%

2

節路食(3.31)

帮式

因此,用楚列斯基分解解对称正定矩阵方程组 AX=6的过程可归纳为

1°实现楚列斯基分解,即

(a)按算式(3.30)计算立的第一列元;

(b)对j=2,3,•,几,按算式(3.31)计算之的第j列元.

甘本2°求解三角形方程组 云Y=6,相应的递推算式是

1:=(6-246o1014 Ci=2.3..0)。含

3°求解三角形方程组 亡-区=了,相应的递推算式是

(3.32)

不路其目丽-楼p

14=101-24.5)/2

(¡=n-1,...,2,1).

上述求解对称正定矩阵方程组的方法称为平方根法:

例5 用平方根法解方程组

改进的平方

根法

2

-27

12,

1-2

-3

14J 83.

解该方程组的系数矩阵是对称正定矩阵,可用平方根法求解.按算

式(3.30)计算亡的第一列元得

41=2,

21=1,

2,=-1.

按算式(3.31)依次计算亡的第二列与第三列元得

2=1, 12=-2, 153=3.

2

0

=2

"

解讠Y=6得y1=5,92=0,93=3.

解立"X=飞得x=1,52=2,81=2.

用平方根法解系数矩阵是几阶对称正定矩阵的线性方程组,当几较大时约

需作口。次乘除法运算(是高斯消元法或杜利特尔分解法的一半).此外,平方根

法还具有数值稳定、存储量小(利用对称性只需用一维数组存放矩阵4对角线

及对角线以下元,并将算得的 工 元存放在A 对应元的位置上)等优点•但平方根法在计算亡的对角线上元时需要用到开方运算

改进的平方根算法:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏驰和徐策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值