无尽的石头

该博客详细解析了一个基于数字和跳跃的迷宫问题,描述了从1号石头出发到达指定编号石头的最少步数计算。通过模拟算法和广度优先搜索(BFS)策略,分析了每个信息的作用,探讨了边界条件处理、数值溢出等关键点,并提供了C++代码实现。
摘要由CSDN通过智能技术生成

问题描述

在一个古老的迷宫中,有一道无尽的通道。通道上每隔一定的距离就会有一块神秘的石头,石头上刻着从1开始的连续整数。从1号石头开始,每块石头的

编号都比前一块大1。

石头上的数字有特殊的意义。如果你站在编号为n的石头上,并向前走,你将会瞬间移动到编号为n+x的石头上,其中x为n的各位数字之和。

例如,如果你站在编号为16的石头上,由于1+6=7,所以下一步你会移动到编号为16+7 =23的石头上。

现在,会有多次询问,你需要对每个询问输出从1号石头出发,到达指定编号石头的最少步数,如果无法到达,则输出-1。

输入格式

输入包含一个整数t,(1≤t≤100),表示有t个询问。接下来t行,每行一个整数n,(1≤n≤10⁶),表示目标石头的编号。

输出格式

对于每个询问,输出一行,表示从1号石头到达目标石头的最少步数。如果无

法到达,输出-1。

一、信息

二、分析

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏驰和徐策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值