9.1.6 蓝桥杯计算几何之任意多边形面积计算

本文介绍了如何使用叉积计算任意多边形(包括凸多边形和非凸多边形)的面积。通过选择基点、划分三角形并计算叉积,最终取绝对值得到多边形面积。这种方法适用于蓝桥杯等算法竞赛中的计算几何问题。
摘要由CSDN通过智能技术生成

9.1.6 蓝桥杯计算几何之任意多边形面积计算

在蓝桥杯等算法竞赛中,计算几何问题经常出现,而多边形面积的计算是其中的一个常见问题。对于任意多边形(包括凸多边形和非凸多边形),计算其面积有一种简单而有效的方法——使用叉积。本篇博客将介绍如何使用叉积来计算任意多边形的面积,包括相关的理论基础和应用实例。

叉积与多边形面积

叉积(Cross Product)在二维空间中可以用来计算两个向量构成的平行四边形的有向面积。给定两个向量a=(x1​,y1​)和b=(x2​,y2​),它们的叉积定义为:

对于一个多边形,我们可以将其划分为多个以一个固定点为顶点的三角形,然后计算每个三角形的有向面积(即叉积的一半),并将它们相加来得到整个多边形的面积。

计算方法

步骤

  1. 选择基点
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏驰和徐策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值