13.1.4 蓝桥杯图论高阶应用(网络图)之Dicnic

本文介绍了Dinic算法,一种用于寻找网络图中最大流的高效算法。通过构建层次图、寻找增广路径和增加流量,Dinic算法在解决最大流问题上表现出色。文章通过一个最大流问题的例题,详细阐述了算法的运用过程和优势。
摘要由CSDN通过智能技术生成

13.1.4 蓝桥杯图论高阶应用(网络图)之Dinic算法

在图论和算法竞赛中,网络流问题占据了一席之地,尤其是在解决最大流问题时,各种算法的效率至关重要。Dinic算法是解决最大流问题的一种高效算法,以其明确的层次结构和优秀的时间复杂度而闻名。本篇博客将介绍Dinic算法的基本概念、原理和应用,通过经典例题帮助理解该算法的运作过程。

Dinic算法概述

Dinic算法(1970年由Yefim Dinitz提出)是一种用于在网络图中寻找最大流的算法。它通过构建层次图和在层次图上寻找增广路径来迭代增加流量,直至无法找到增广路径为止。Dinic算法以其理论上的高效性以及实践中的良好表现而著称,在很多情况下都是解决最大流问题的首选算法。

算法原理

Dinic算法的主要步骤如下:

  1. 构建层次图:从源点出发对原图进行广度优先搜索(BFS),为每个节点标记深度,形成一个层次图。层次图中的边仅从深度较小的节点指向深度较大的节点。
  2. 寻找增广路径:在层次图上使用深度优先搜索(DFS࿰
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏驰和徐策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值