3-5 关系及其表示

本文详细介绍了数学中的关系概念,从序偶出发,探讨了二元关系的定义、前域、值域和域的含义,以及关系的不同表示形式如直积、关系矩阵和图形。重点讲解了恒等关系和定理3-5.1,展示了关系在集合论和计算机科学中的重要性。
摘要由CSDN通过智能技术生成

3-5关系及其表示:从序偶到关系图的旅程

关系,一个我们在日常生活中频繁遇到的概念,涉及各种形式,如家庭成员之间、物件位置等。数学中的关系概念,虽然更为抽象,却构建了一个框架,用以描述和分析集合元素之间的复杂联系。本文旨在解析数学中的关系概念,通过实例、定义到关系的图形表示,为你揭开关系的神秘面纱。

序偶与关系的基本概念

实例引入

考虑电影票和座位之间的对号关系:设有电影票集合X和座位集合Y,每张电影票x与座位y之间要么存在对号关系xRy,要么不存在。这种对号关系可以视为序偶的集合,其中序偶表示两个对象之间的关联。

关系的定义

  • 二元关系定义:任何序偶的集合定义了一个二元关系R。如果序偶<x,y>属于R,则表示为<x,y>∈R或xRy。反之,如果不属于R,则记作<x,y>∉R或¬xRy。

例如,实数集中的大于关系">"可以表示为:>{<x,y>|x,y是实数且x>y}。

前域、值域与域

关系的前域和值域是理解和分析关系的关键概念。

  • 前域(dom R):由所有使序偶<x,y>属于R的x组成的集合。
  • 值域(ran R):由所有使序偶<x,y>属于R的y组成的集合。
  • 域(FLD R):前域和值域的并集,即FLD R = dom R ∪ ran R。

通过例题探讨这些概念,我们可以看到关系实质上是序偶的集合,且前域和值域分别属于不同集合时,关系即为两集合直积的子集。

从集合到关系的表示

关系的表示形式多样,包括序偶集合、矩阵和图形。

直积与关系

任意两个集合X和Y的直积X×Y的子集R称作X到Y的关系。这为我们提供了一种从集合到关系的转换方法。

关系矩阵

给定两个有限集合X和Y,二元关系R对应的矩阵M可以用来表示X到Y的关系,其中矩阵的元素根据序偶是否属于R来确定。

关系图

关系亦可通过图形表示,其中集合X和Y的元素分别作为图的结点,序偶的存在则通过结点间的有向弧来表示。这种图形表示法直观地展示了元素间的关系。

结论

通过深入探讨3-5关系及其表示方式,我们不仅能够理解数学中关系的基本概念,还能通过不同的表示方法来分析和解决问题。从序偶到关系图,每一种表示都有其独特的视角和应用价值,展现了数学美的不同维度。

 定义:

定义3-5.1

描述的是二元关系的基本概念,它将任何序偶的集合视为确定了一个二元关系R。这个定义核心在于理解什么是序偶、什么是二元关系,以及如何用序偶集合来表示二元关系。

序偶和二元关系

  • 序偶:一个序偶是一个有序对,通常表示为<x, y>∈∈R,其中x和y是集合中的元素。序偶的顺序很重要,<x, y>与<y, x>是不同的,除非x和y相等。
  • 二元关系:是定义在两个集合之间的关系,可以理解为集合A中的元素和集合B中的元素之间的某种联系或规则。如果从集合A到集合B有这样的关系,我们可以通过检查A中的元素和B中的元素是否符合这个规则来确定它们是否相关。

定义3-5.1 的解析

在定义3-5.1 中,一个二元关系R被定义为一个序偶的集合。这意味着:

  • 如果一个序偶<x, y>属于关系R,我们可以表示为<x, y>∈∈R或用xRy来表示x和y满足关系R。
  • 如果一个序偶<x, y>不属于关系R,则可以表示为<x, y>∉∈/R或¬xRy,表示x和y不满足关系R。

举例说明

考虑实数集上的"小于"关系,我们可以将其定义为R={<x, y>|x, y是实数且<x<y}。这里,R是所有满足x<y的实数对x和y的集合。例如,如果x=3和y=5,那么<3, 5>属于R,因为3小于5,我们可以写作3R5或<3, 5>∈R。

重要性

这个定义对于理解如何在数学和计算机科学中形式化地表示对象之间的关系至关重要。它为我们提供了一种标准化的方法来描述和处理不同的关系,如等于、小于、属于等,使得我们能够对这些关系进行分析和操作。

 

 定义3-5.2 

定义3-5.2 进一步深入到二元关系的结构中,提出了关系的前域(domain)、值域(range),以及这两个概念合起来定义的关系的域(field)的概念。这些概念帮助我们更细致地理解和分析关系的性质。

关系的前域(dom R)

  • 前域(dom R)是指参与关系R的所有第一个元素组成的集合。数学上,如果有序偶<x, y>属于关系R,那么所有这样的x的集合称为R的前域,即dom R = {x|存在y使得<x, y>∈R}。

关系的值域(ran R)

  • 值域(ran R)是指参与关系R的所有第二个元素组成的集合。换句话说,对于关系R中的每个有序偶<x, y>,所有这样的y的集合称为R的值域,即ran R = {y|存在x使得<x, y>∈R}。

关系的域(FLD R)

  • (FLD R)是前域和值域的并集,它包含了参与关系R的所有元素。这意味着,无论是作为有序偶的第一个元素还是第二个元素出现,所有这些元素共同构成了关系R的域。数学表达为FLD R = dom R ∪ ran R。

例子解析

假设有一个关系H,定义为H={<1, 2>, <1, 4>, <2, 4>, <3, 4>},那么:

  • dom H 就是{1, 2, 3},因为这些是出现在序偶第一个位置的元素。
  • ran H 是{2, 4},因为这些是出现在序偶第二个位置的元素。
  • FLD H,即H的域,是dom H和ran H的并集,即{1, 2, 3, 4}。

重要性

这些概念对于理解和分析数学、逻辑以及计算机科学中的关系至关重要。它们不仅帮助我们识别和区分关系中的不同角色(即作为输入的元素和作为输出的元素),还使我们能够更好地理解关系的结构和性质,如函数的定义域和值域等。通过明确这些基本的概念,我们能够构建更复杂的数学模型,并应用于算法设计、数据库理论等领域。

 

定义3-5.3  

定义3-5.3 涉及到二元关系从集合X到集合Y的表示,即直积X×Y的子集R作为一个关系的形式化定义。这个定义为我们如何理解和构造集合之间关系提供了基础。

直积X×Y

在深入定义之前,我们首先要理解直积的概念。给定两个集合X和Y,它们的直积X×Y是所有可能的有序对<x, y>的集合,其中x属于X,且y属于Y。直积构建了一个框架,允许我们探讨集合X中元素与集合Y中元素之间的所有可能关系。

定义3-5.3的核心

  • X到Y的关系R:定义3-5.3中,关系R被定义为直积X×Y的子集。这意味着,关系R是由满足某种特定条件的元素对<x, y>组成,其中x是集合X的元素,而y是集合Y的元素。

关系的图形表示

定义中也提及关系R可以通过图形表示(虽然这部分可能是对定义的扩展讨论)。在图形表示中,集合X和Y的元素分别位于图的两侧,如果两个元素x和y之间存在关系(即<x, y>属于R),则在对应的点之间画一条线连接它们。这种图形表示方法直观地显示了元素之间的关系。

例子

如果X = {1, 2, 3}和Y = {a, b},假设我们定义一个关系R,使得R = {<1, a>, <2, b>, <3, a>}。这意味着:

  1. 元素1与a之间存在关系。
  2. 元素2与b之间存在关系。
  3. 元素3与a之间也存在关系。

在图形表示中,我们将看到从集合X的元素1和3到集合Y的元素a的线,以及从2到b的线,直观地展示了这些元素对之间的关系。

重要性

通过定义3-5.3,我们能够精确地描述和理解集合之间的关系。这不仅是数学中的一个基本概念,也是计算机科学、逻辑学和许多其他领域的核心。理解如何构造和分析这些关系,对于数据库设计、算法开发、逻辑推理等都是至关重要的。

 

 定义3-5.4

定义3-5.4 引入了恒等关系的概念,这是在集合上定义的一种特殊的二元关系。恒等关系对于理解集合内元素的自引用关系非常重要。

恒等关系(Ix)

恒等关系是定义在同一个集合X上的一种关系,其中每个元素都与自己形成关系,但不与任何其他元素形成关系。数学上,恒等关系Ix可以被定义为:

  • Ix = {<x, x> | x ∈ X}

这意味着,对于集合X中的每一个元素x,恒等关系Ix包含了形如<x, x>的序偶。没有其他形式的序偶属于这个关系,即只有当两个元素完全相同时,这两个元素才处于恒等关系中。

例子

假设有一个集合A = {1, 2, 3},则集合A上的恒等关系Iₐ可以表示为:

  • Iₐ = {<1, 1>, <2, 2>, <3, 3>}

这表示1与1、2与2、3与3之间各自存在关系,但1不与2或3、2不与1或3、3不与1或2形成任何关系。

恒等关系的重要性

恒等关系是数学和计算机科学中的一个基本概念,具有以下重要性:

  • 基础性质:恒等关系是最简单的二元关系之一,为理解更复杂的关系提供了基础。
  • 自引用:恒等关系提供了一种表达元素自引用的方式,这在逻辑推理、程序设计等领域中非常有用。
  • 单位元素:在一些数学结构中(如群、环、域等),恒等关系有助于定义单位元素的概念,这是结构的基本组成部分。
  • 关系运算:在关系的运算中,恒等关系常作为单位元素,对于理解关系的复合等操作至关重要。

应用

恒等关系不仅在纯数学研究中有重要应用,在计算机科学、特别是在数据库、编程语言理论、自动机理论等领域也非常重要。例如,在编程中,恒等比较(===)就是基于恒等关系的概念。在数据库的关系模型中,恒等关系有助于定义和理解实体的唯一性。

总之,定义3-5.4 介绍的恒等关系是理解和分析集合及其元素间关系的一个基本工具,它在数学和计算机科学的多个领域中都有广泛的应用。

定理3-5.1 

定理的陈述

定理3-5.1表明如果Z和S是从集合X到集合Y的两个关系,则Z和S的并(Z∪S)、交(Z∩S)、补(‾S或X×Y−S)、差(Z−S)也是从X到Y的关系。

证明步骤

  1. 关系的并(Z∪S):

    • 由于Z和S都是从X到Y的关系,所以它们都是X×Y的子集,即Z⊆X×Y且S⊆X×Y。
    • 集合的并操作不会引入不属于这两个集合的元素,因此Z∪S也必定是X×Y的子集,即Z∪S⊆X×Y。这满足了从X到Y的关系的定义。
  2. 关系的交(Z∩S):

    • 同理,Z和S的交集仅包含同时属于Z和S的元素。由于Z和S都是X×Y的子集,它们的交集Z∩S也必然是X×Y的子集,即Z∩S⊆X×Y。
  3. 关系的补(‾S或X×Y−S):

    • S的补集是指X×Y中不属于S的所有元素的集合。因为补集是在X×Y的框架内定义的,它自然也是X×Y的子集。
  4. 关系的差(Z−S):

    • Z−S表示所有属于Z但不属于S的元素的集合。由于这些元素已经在Z中,且Z是X×Y的子集,因此差集Z−S也是X×Y的子集。

结论

根据集合论的基本性质,我们可以推断,无论是并集、交集、补集还是差集操作,结果仍然保持在原有的直积X×Y的范围内,满足从集合X到集合Y的关系的定义。因此,这些操作得出的结果仍旧是有效的二元关系,从而证明了定理3-5.1的正确性。

通过这个定理,我们可以理解,二元关系之间的基本集合操作不会破坏它们作为关系的本质属性,这为处理和分析复杂的关系系统提供了理论基础。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏驰和徐策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值