8.1 向量及其线性运算

 

第八章 向量代数与空间解析几何

导言

在本章中,我们将深入探讨向量代数与空间解析几何的基本概念和应用。平面解析几何利用坐标方法将平面上的点与数对应起来,以代数方法研究几何问题。空间解析几何也采用相似的方法,但在三维空间中进行。向量代数不仅是研究空间几何的强有力工具,也是理解多元函数微积分的基础。我们将首先介绍向量的概念,探讨向量的线性运算,并最终应用这些知识来解析空间中的几何问题。

第一节 向量及其线性运算

一、向量的概念

向量是一类具有大小和方向的量,常见如位移、速度、加速度、力等。在数学中,向量通常由有向线段表示,线段的长度代表向量的大小,方向代表向量的方向。例如,以点A为起点、点B为终点的向量表示为向量AB。

在许多实际问题中,向量的起点是重要的(如速度向量取决于质点的位置)。然而,在数学分析中,为了简化问题,我们主要研究与起点无关的自由向量,即仅考虑向量的大小和方向。

如果两个向量a和b的大小和方向完全相同,即它们可以通过平行移动完全重合,那么我们认为向量a和b是相等的,记作a = b。

二、向量的基本运算和性质

1. 向量的模

向量的模是表示向量大小的量,记作|a|,例如向量AB的模记作|AB|。单位向量是模为1的向量,而零向量的模为0,记作0,它没有特定的方向。

2. 向量的夹角

设有两个非零向量a和b,不超过π的∠AOB(设φ=∠AOB, 0≤φ≤π)称为向量a与b的夹角,记作(a, b)。如果向量之一是零向量,则它们的夹角可以任意定义从0到π之间。

3. 向量的平行与垂直

如果两个向量a和b的夹角φ=0或π,我们称这两个向量平行,记作a∥b。如果φ=π/2,则向量a与b垂直,记作a⊥b。由于零向量的夹角可任意取值,它可以认为与任何向量都平行或垂直。

4. 向量的共线与共面

当两个向量平行且它们的起点相同时,它们的终点与起点会在同一直线上,这称为向量共线。类似地,如果三个或以上的向量(起点相同)的终点与起点位于同一平面上,这些向量称为共面。

通过本章的学习,我们可以更深入地理解向量的性质和运算,为进一步探索空间几何和高级数学打下坚实的基础。

 

 

二、向量的线性运算

1. 向量的加减法

向量的加法

向量加法遵循以下规则:

三角形法则
设两个向量 𝑎a 和 𝑏b,任取一点 𝐴A,作 𝐴𝐵=𝑎AB=a,再以 𝐵B 为起点作 𝐵𝐶=𝑏BC=b。连接 𝐴𝐶AC,得到向量 𝐴𝐶=𝑐AC=c,则 𝑐c 为 𝑎a 和 𝑏b 的和,记作 𝑎+𝑏a+b,即:

这种加法方法称为向量相加的三角形法则,如图 8-3 所示。

平行四边形法则
在力学中,有求合力的平行四边形法则。类似地,在向量加法中,若两个向量 𝑎a 和 𝑏b 不平行,作 𝐴𝐵=𝑎AB=a、𝐴𝐷=𝑏AD=b,以 𝐴𝐵AB 和 𝐴𝐷AD 为边作平行四边形 𝐴𝐵𝐶𝐷ABCD。连接对角线 𝐴𝐶AC,显然向量 𝐴𝐶AC 为 𝑎a 和 𝑏b 的和 𝑎+𝑏a+b。

运算律

向量的加法满足以下规律:

  1. 交换律: 𝑎+𝑏=𝑏+𝑎a+b=b+a
  2. 结合律: (𝑎+𝑏)+𝑐=𝑎+(𝑏+𝑐)(a+b)+c=a+(b+c)

从图 8-4 可以看到,使用三角形法则:

因此,向量加法符合交换律。结合律的验证可通过图 8-5 来解释。

多个向量的加法

由于向量的加法符合交换律和结合律,因此 𝑛n 个向量 𝑎1,𝑎2,…,𝑎𝑛a1​,a2​,…,an​(𝑛≥3n≥3)相加可表示为:

𝑎1+𝑎2+…+𝑎𝑛a1​+a2​+…+an​

并根据三角形法则,可以推导出 𝑛n 个向量相加的规则:将前一个向量的终点作为下一个向量的起点,依次作向量 𝑎1,𝑎2,…,𝑎𝑛a1​,a2​,…,an​,然后以第一个向量的起点为起点,最后一个向量的终点为终点,作一个向量 𝑆S,则:

𝑆=𝑎1+𝑎2+𝑎3+𝑎4+𝑎5S=a1​+a2​+a3​+a4​+a5​

如图 8-6 所示。

向量的减法

设 𝑎a 为一个向量,与其模相等而方向相反的向量称为 𝑎a 的负向量,记作 −𝑎−a。向量减法的定义是:两个向量 𝑏b 和 𝑎a 的差:

𝑏−𝑎=𝑏+(−𝑎)b−a=b+(−a)

即,将向量 −𝑎−a 加到向量 𝑏b 上,得到 𝑏b 和 𝑎a 的差 𝑏−𝑎b−a,如图 8-7(a) 所示。

特别地,当 𝑏=𝑎b=a 时,有:

𝑎−𝑎=𝑎+(−𝑎)=0a−a=a+(−a)=0

显然,任取向量 𝐴𝐵AB 及点 𝑂O,则:

𝐴𝐵=𝐴𝑂+𝑂𝐵=𝑂𝐵−𝑂𝐴AB=AO+OB=OB−OA

因此,将向量 𝑎a 和 𝑏b 移到同一起点 𝑂O 时,从 𝑎a 的终点 𝐴A 指向 𝑏b 的终点 𝐵B 所构成的向量 𝐴𝐵AB 即为 𝑏b 和 𝑎a 的差 𝑏−𝑎b−a,如图 8-7(b) 所示。

向量加减法的性质

根据三角形不等式,可以得到以下关系:

其中,等号在向量 𝑎a 和 𝑏b 同向或反向时成立。

 

2. 向量与数的乘法

设向量 𝑎a 和实数 𝜆λ,它们的乘积记作 𝜆𝑎λa。规定 𝜆𝑎λa 为一个向量,其模和方向的计算方法如下:

  • 模:∣𝜆𝑎∣=∣𝜆∣⋅∣𝑎∣∣λa∣=∣λ∣⋅∣a∣
  • 方向:
    • 当 𝜆>0λ>0 时,𝜆𝑎λa 与 𝑎a 同方向。
    • 当 𝜆<0λ<0 时,𝜆𝑎λa 与 𝑎a 反方向。
    • 当 𝜆=0λ=0 时,𝜆𝑎λa 为零向量,方向可以是任意的。

特别地,当 𝜆=±1λ=±1 时,有:

  • 1𝑎=𝑎1a=a
  • −1𝑎=−𝑎−1a=−a
向量与数的乘积的运算律
  1. 结合律:
    对于任意实数 𝜆λ、𝜇μ 和向量 𝑎a,有: 𝜆(𝜇𝑎)=𝜇(𝜆𝑎)=(𝜆𝜇)𝑎λ(μa)=μ(λa)=(λμ)a

    这是因为根据定义,向量 𝜆(𝜇𝑎)λ(μa)、𝜇(𝜆𝑎)μ(λa) 和 (𝜆𝜇)𝑎(λμ)a 都是平行向量,且方向相同,其模都满足: ∣𝜆(𝜇𝑎)∣=∣𝜇(𝜆𝑎)∣=∣(𝜆𝜇)𝑎∣=∣𝜆𝜇∣⋅∣𝑎∣∣λ(μa)∣=∣μ(λa)∣=∣(λμ)a∣=∣λμ∣⋅∣a∣

  2. 分配律:
    向量与数的乘积还满足以下分配律:

    • 标量对向量的分配律:
      (𝜆+𝜇)𝑎=𝜆𝑎+𝜇𝑎(λ+μ)a=λa+μa

    • 向量对标量的分配律:
      𝜆(𝑎+𝑏)=𝜆𝑎+𝜆𝑏λ(a+b)=λa+λb

这些规律可以通过向量与数乘积的定义加以证明。

应用举例

例 1: 在平行四边形 𝐴𝐵𝐶𝐷ABCD 中,设 𝐴𝐵=𝑎AB=a,𝐴𝐷=𝑏AD=b。用 𝑎a 和 𝑏b 表示向量 𝑀𝐴MA、𝑀𝐵MB、𝑁𝐶NC 和 𝑁𝐵NB,其中 𝑀M 是平行四边形对角线的交点(图 8-8)。

解: 平行四边形的对角线互相平分,因此有:

𝐴𝐶=𝑎+𝑏=2𝐴𝑀AC=a+b=2AM
𝐴𝑀=12(𝑎+𝑏)AM=21​(a+b)
因此:
𝑀𝐴=−12(𝑎+𝑏)MA=−21​(a+b)

同理,由于 𝑀𝐶=−𝐴𝑀MC=−AM:
𝑀𝐶=12(𝑎+𝑏)MC=21​(a+b)

由于 −𝑎+𝑏=2𝑀𝐵−a+b=2MB:
𝑀𝐵=12(𝑏−𝑎)MB=21​(b−a)

并且,因 𝑁𝐵=−𝑀𝐵NB=−MB:
𝑁𝐵=12(𝑎−𝑏)NB=21​(a−b)

单位向量的概念

模等于1的向量称为单位向量。设单位向量 𝑒𝑎ea​ 与非零向量 𝑎a 同方向,根据向量与数乘积的定义,因 ∣𝑎∣>0∣a∣>0,所以:

∣𝑎∣𝑒𝑎∣a∣ea​

与 𝑎a 方向相同,且模为:

∣𝑎∣⋅∣𝑒𝑎∣=∣𝑎∣⋅1=∣𝑎∣∣a∣⋅∣ea​∣=∣a∣⋅1=∣a∣

因此:

𝑎=∣𝑎∣𝑒𝑎a=∣a∣ea​

我们可以通过这种方式表示任意向量为单位向量与其模的乘积。当 𝜆≠0λ=0 时,有:

𝑎∣𝑎∣=𝑒𝑎∣a∣a​=ea​

这表示将非零向量除以它的模得到与原向量同方向的单位向量。

定理 1:向量平行性

设向量 𝑎≠0a=0,向量 𝑏b 平行于 𝑎a 的充分必要条件是:存在唯一的实数 𝜆λ 使得:

𝑏=𝜆𝑎b=λa

证明:

  • 充分性:
    这是显而易见的。

  • 必要性:
    设 𝑏∥𝑎b∥a,取 ∣𝜆∣=∣𝑏∣∣𝑎∣∣λ∣=∣a∣∣b∣​。若 𝑏b 与 𝑎a 同向,则 𝜆λ 为正;若 𝑏b 与 𝑎a 反向,则 𝜆λ 为负。

    因此,𝑏=𝜆𝑎b=λa,因为此时 𝑏b 与 𝜆𝑎λa 同向,且:

    ∣𝜆𝑎∣=∣𝜆∣⋅∣𝑎∣=∣𝑏∣∣𝑎∣⋅∣𝑎∣=∣𝑏∣∣λa∣=∣λ∣⋅∣a∣=∣a∣∣b∣​⋅∣a∣=∣b∣

  • 唯一性:
    设 𝑏=𝜆𝑎b=λa,又设 𝑏=𝜇𝑎b=μa,两式相减得:

    (𝜆−𝜇)𝑎=0(λ−μ)a=0

    因为 ∣𝑎∣≠0∣a∣=0,所以 ∣𝜆−𝜇∣=0∣λ−μ∣=0,即:

    𝜆=𝜇λ=μ

定理证明完毕。

定理的应用

定理 1 为建立数轴的理论提供了依据。给定一个方向和单位长度,数轴得以确定。一个单位向量不仅确定了方向,也确定了单位长度,因此给定一个点和单位向量可以确定一条数轴。

设点 𝑂O 和单位向量 𝑖i 确定了数轴 𝑂𝑥Ox(图 8-9)。对轴上的任意点 𝑃P,其对应的向量为 𝑂𝑃OP。由于 𝑂𝑃∥𝑖OP∥i,根据定理 1,存在唯一的实数 𝑥x,使得:

𝑂𝑃=𝑥𝑖OP=xi
实数 𝑥x 即为轴上有向线段 𝑂𝑃OP 的值,并与坐标轴上的点 𝑃P 存在一一对应关系。因此,轴上的点 𝑃P 的坐标为 𝑥x 的充分必要条件是:

𝑂𝑃=𝑥𝑖OP=xi

 

 

 

 

三、空间直角坐标系

在空间内选定一点 𝑂O(称为原点)以及三个两两垂直的单位向量 𝑖i、𝑗j 和 𝑘k,它们对应三条相互垂直、以 𝑂O 为原点的坐标轴。它们依次被称为 x 轴y 轴z 轴。这三个轴构成一个空间直角坐标系,称为 Oxyz 或 [𝑂;𝑖,𝑗,𝑘][O;i,j,k] 坐标系(见图 8-10)。

通常,x 轴和 y 轴位于水平面内,而 z 轴为铅垂线,并且坐标轴的方向通常遵循右手定则:用右手握住 z 轴,当右手的四个手指沿 x 轴正方向向 y 轴正方向转动时,拇指指向的方向就是 z 轴的正向(见图 8-11)。

坐标面和象限

三条坐标轴的任意两条可以确定一个平面,这样定出的三个平面统称为 坐标面

  • xOy 平面: 由 x 轴和 y 轴确定
  • yOz 平面: 由 y 轴和 z 轴确定
  • zOx 平面: 由 z 轴和 x 轴确定

这三个平面将空间分为八个部分,称为 象限。在 xOy 平面上方、yOz 平面前方、zOx 平面右方的象限被称为第一象限。其余象限编号依次为:第二、第三、第四象限,按逆时针方向排列(位于 xOy 平面上方)。第五到第八象限位于 xOy 平面下方,也按逆时针方向排列。它们分别用罗马数字 I、II、III、IV、V、VI、VII 和 VIII 表示(见图 8-12)。

向量的坐标分解

设 𝑟r 为一个向量,对应空间中某一点 𝑀M,使得 𝑂𝑀=𝑟OM=r。以 𝑂𝑀OM 为对角线,三条坐标轴为棱作出长方体 𝑅𝐻𝑀𝐾RHMK-𝑂𝑃𝑁𝑄OPNQ,如图 8-13 所示。有:

𝑟=𝑂𝑀=𝑂𝑃+𝑃𝑁+𝑁𝑅=𝑂𝑃+𝑂𝑄+𝑂𝑅r=OM=OP+PN+NR=OP+OQ+OR

设 𝑂𝑃=𝑥𝑖OP=xi、𝑂𝑄=𝑦𝑗OQ=yj、𝑂𝑅=𝑧𝑘OR=zk,则:

𝑟=𝑂𝑀=𝑥𝑖+𝑦𝑗+𝑧𝑘r=OM=xi+yj+zk

上式称为向量 𝑟r 的 坐标分解式,其中 𝑥𝑖xi、𝑦𝑗yj 和 𝑧𝑘zk 称为向量 𝑟r 沿三个坐标轴方向的分向量。

坐标关系

显然,给定向量 𝑟r,可以确定点 𝑀M、向径 𝑂𝑀OM、以及 𝑥x、𝑦y 和 𝑧z 三个有序数。反之,给定这三个有序数也可以确定向量 𝑟r 和点 𝑀M。因此,点 𝑀M、向量 𝑟r 与三个有序数 𝑥x、𝑦y、𝑧z 之间存在一一对应关系:

𝑀→𝑟=𝑂𝑀=𝑥𝑖+𝑦𝑗+𝑧𝑘→(𝑥,𝑦,𝑧)M→r=OM=xi+yj+zk→(x,y,z)

根据这个关系,我们可以定义:三个有序数 𝑥x、𝑦y、𝑧z 分别称为 向量 𝑟r(在 Oxyz 坐标系中) 的坐标,记作 𝑟=(𝑥,𝑦,𝑧)r=(x,y,z)。同时,这三个有序数也被称为 点 𝑀M(在 Oxyz 坐标系中) 的坐标,记作 𝑀=(𝑥,𝑦,𝑧)M=(x,y,z)。

向量 𝑟=𝑂𝑀r=OM 称为 点 𝑀M 关于原点 𝑂O 的向径。上述定义表明,一个点与该点的向径具有相同的坐标。表示形式 (𝑥,𝑦,𝑧)(x,y,z) 可以同时表示点 𝑀M 和向径 𝑂𝑀OM。

坐标面的特征

坐标面和坐标轴上的点具有以下特征:

  • yOz 平面 上的点:
    𝑥=0x=0

  • zOx 平面 上的点:
    𝑦=0y=0

  • xOy 平面 上的点:
    𝑧=0z=0

  • x 轴 上的点:
    𝑦=𝑧=0y=z=0

  • y 轴 上的点:
    𝑥=𝑧=0x=z=0

  • z 轴 上的点:
    𝑥=𝑦=0x=y=0

  • 如果点 𝑀M 是 原点
    𝑥=𝑦=𝑧=0x=y=z=0

 

 

 

四、利用坐标作向量的线性运算

通过向量的坐标表示,可以方便地进行向量的加法、减法和数乘等线性运算。设 𝑎=(𝑎1,𝑎2,𝑎3)a=(a1​,a2​,a3​) 和 𝑏=(𝑏1,𝑏2,𝑏3)b=(b1​,b2​,b3​),即:

𝑎=𝑎1𝑖+𝑎2𝑗+𝑎3𝑘a=a1​i+a2​j+a3​k
𝑏=𝑏1𝑖+𝑏2𝑗+𝑏3𝑘b=b1​i+b2​j+b3​k

根据向量加法的交换律、结合律以及向量与数的乘法的结合律和分配律,有:

  • 向量加法:
    𝑎+𝑏=(𝑎1+𝑏1)𝑖+(𝑎2+𝑏2)𝑗+(𝑎3+𝑏3)𝑘a+b=(a1​+b1​)i+(a2​+b2​)j+(a3​+b3​)k
    对应坐标表示为:
    𝑎+𝑏=(𝑎1+𝑏1,𝑎2+𝑏2,𝑎3+𝑏3)a+b=(a1​+b1​,a2​+b2​,a3​+b3​)

  • 向量减法:
    𝑎−𝑏=(𝑎1−𝑏1)𝑖+(𝑎2−𝑏2)𝑗+(𝑎3−𝑏3)𝑘a−b=(a1​−b1​)i+(a2​−b2​)j+(a3​−b3​)k
    对应坐标表示为:
    𝑎−𝑏=(𝑎1−𝑏1,𝑎2−𝑏2,𝑎3−𝑏3)a−b=(a1​−b1​,a2​−b2​,a3​−b3​)

  • 数乘向量:
    对于任意实数 𝐴A:
    𝐴𝑎=(𝐴𝑎1)𝑖+(𝐴𝑎2)𝑗+(𝐴𝑎3)𝑘Aa=(Aa1​)i+(Aa2​)j+(Aa3​)k
    对应坐标表示为:
    𝐴𝑎=(𝐴𝑎1,𝐴𝑎2,𝐴𝑎3)Aa=(Aa1​,Aa2​,Aa3​)

这些运算表明,对向量进行加减法或数乘操作,只需分别对各个坐标进行相应的运算即可。

向量的平行关系

根据定理1,当向量 𝑎≠0a=0 时,向量 𝑏b 平行于 𝑎a 的充要条件是存在唯一的实数 𝐴A,使得:

𝑏=𝐴𝑎b=Aa
对应的坐标表示为:
(𝑏1,𝑏2,𝑏3)=𝐴(𝑎1,𝑎2,𝑎3)(b1​,b2​,b3​)=A(a1​,a2​,a3​)

这意味着,向量 𝑏b 和 𝑎a 对应的坐标成比例。

例题 1:解以向量为元的线性方程组

给定线性方程组:

{3𝑥−2𝑦=6}{3x−2y=6}

其中 𝑎=(2,1,2)a=(2,1,2) 和 𝑏=(−1,1,−2)b=(−1,1,−2)。

解: 如同解以实数为元的线性方程组一样,求解得:

𝑥=2𝑎−3𝑏x=2a−3b
𝑦=3𝑎−5𝑏y=3a−5b

将 𝑎a 和 𝑏b 的坐标表示代入,得到:

𝑥=2(2,1,2)−3(−1,1,−2)=(7,−1,10)x=2(2,1,2)−3(−1,1,−2)=(7,−1,10)
𝑦=3(2,1,2)−5(−1,1,−2)=(11,−2,16)y=3(2,1,2)−5(−1,1,−2)=(11,−2,16)

例题 2:在直线 AB 上求点 M

已知两点 𝐴(𝑥1,𝑦1,𝑧1)A(x1​,y1​,z1​) 和 𝐵(𝑥2,𝑦2,𝑧2)B(x2​,y2​,z2​),以及实数 𝜆≠−1λ=−1。在直线 AB 上求点 𝑀M,使得:

𝐴𝑁=𝜆⋅𝑀𝐵AN=λ⋅MB

解: 如图 8-14 所示。由于:

𝐴𝑁=𝑂𝑀−𝑂𝐴AN=OM−OA
𝑀𝐵=𝑂𝐵−𝑂𝑀MB=OB−OM

因此:

𝑂𝑀−𝑂𝐴=𝜆(𝑂𝐵−𝑂𝑀)OM−OA=λ(OB−OM)

从而:

𝑂𝑀=11+𝜆(𝑂𝐴+𝜆𝑂𝐵)OM=1+λ1​(OA+λOB)

将点 𝐴A 和点 𝐵B 的坐标代入,得到:

𝑂𝑀=11+𝜆(𝑥1+𝜆𝑥2,𝑦1+𝜆𝑦2,𝑧1+𝜆𝑧2)OM=1+λ1​(x1​+λx2​,y1​+λy2​,z1​+λz2​)

这就是点 𝑀M 的坐标。

注: 在此例中,点 𝑀M 被称为向量 AB 的 𝜆λ 分点。当 𝜆=1λ=1 时,得到线段 AB 的中点:

𝑀=(𝑥1+𝑥22,𝑦1+𝑦22,𝑧1+𝑧22)M=(2x1​+x2​​,2y1​+y2​​,2z1​+z2​​)

总结:

  1. 由于点 𝑀M 和向径 𝑂𝑀OM 具有相同的坐标,求点 𝑀M 的坐标即为求 𝑂𝑀OM 的坐标。

  2. 记号 (𝑥,𝑦,𝑧)(x,y,z) 既可以表示点 𝑀M,也可以表示向径 𝑂𝑀OM。在几何学中,点和向量是两个不同的概念,不可混淆。当 (𝑥,𝑦,𝑧)(x,y,z) 表示向量时,可以对其进行运算;而当 (𝑥,𝑦,𝑧)(x,y,z) 表示点时,不能直接对其进行运算。需要根据上下文明确它的含义。

 

 

 

五、向量的模、方向角、投影

1. 向量的模与两点间的距离公式

设向量 𝑟=(𝑥,𝑦,𝑧)r=(x,y,z),作 𝑂𝑀=𝑟OM=r,如图 8-13 所示:

𝑟=𝑂𝑀=𝑂𝑃+𝑂𝑄+𝑂𝑅r=OM=OP+OQ+OR

根据勾股定理可得:

∣𝑟∣=∣𝑂𝑀∣=∣𝑂𝑃∣2+∣𝑂𝑄∣2+∣𝑂𝑅∣2∣r∣=∣OM∣=∣OP∣2+∣OQ∣2+∣OR∣2​

其中,利用 𝑂𝑃=𝑥𝑖OP=xi、𝑂𝑄=𝑦𝑗OQ=yj、𝑂𝑅=𝑧𝑘OR=zk,得:

∣𝑂𝑃∣=∣𝑥∣,∣𝑂𝑄∣=∣𝑦∣,∣𝑂𝑅∣=∣𝑧∣∣OP∣=∣x∣,∣OQ∣=∣y∣,∣OR∣=∣z∣

于是,向量模的坐标表示为:

∣𝑟∣=𝑥2+𝑦2+𝑧2∣r∣=x2+y2+z2​

设有两点 𝐴(𝑥1,𝑦1,𝑧1)A(x1​,y1​,z1​) 和 𝐵(𝑥2,𝑦2,𝑧2)B(x2​,y2​,z2​),两点间的距离 ∣𝐴𝐵∣∣AB∣ 就是向量 𝐴𝐵AB 的模。根据:

𝐴𝐵=𝑂𝐵−𝑂𝐴=(𝑥2,𝑦2,𝑧2)−(𝑥1,𝑦1,𝑧1)=(𝑥2−𝑥1,𝑦2−𝑦1,𝑧2−𝑧1)AB=OB−OA=(x2​,y2​,z2​)−(x1​,y1​,z1​)=(x2​−x1​,y2​−y1​,z2​−z1​)

得两点间的距离公式:

∣𝐴𝐵∣=(𝑥2−𝑥1)2+(𝑦2−𝑦1)2+(𝑧2−𝑧1)2∣AB∣=(x2​−x1​)2+(y2​−y1​)2+(z2​−z1​)2​

例题 4:

题目: 求证以 𝑀1(4,3,1)M1​(4,3,1)、𝑀2(7,1,2)M2​(7,1,2) 和 𝑀3(5,2,3)M3​(5,2,3) 三点为顶点的三角形是一个等腰三角形。

解答:

计算三条边的平方:

∣𝑀1𝑀2∣2=(7−4)2+(1−3)2+(2−1)2=14∣M1​M2​∣2=(7−4)2+(1−3)2+(2−1)2=14
∣𝑀2𝑀3∣2=(5−7)2+(2−1)2+(3−2)2=6∣M2​M3​∣2=(5−7)2+(2−1)2+(3−2)2=6
∣𝑀3𝑀1∣2=(4−5)2+(3−2)2+(1−3)2=6∣M3​M1​∣2=(4−5)2+(3−2)2+(1−3)2=6

因为 ∣𝑀2𝑀3∣=∣𝑀3𝑀1∣∣M2​M3​∣=∣M3​M1​∣,所以三角形 𝑀1𝑀2𝑀3M1​M2​M3​ 是等腰三角形。

例题 5:

题目: 在 z 轴上求与两点 𝐴(−4,1,7)A(−4,1,7) 和 𝐵(3,5,−2)B(3,5,−2) 等距离的点。

解答: 因为所求的点在 z 轴上,所以设该点为 𝑀(0,0,𝑧)M(0,0,z)。依题意有:

∣𝐴𝑀∣=∣𝐵𝑀∣∣AM∣=∣BM∣

即:

(0+4)2+(0−1)2+(𝑧−7)2=(3−0)2+(5−0)2+(−2−𝑧)2(0+4)2+(0−1)2+(z−7)2​=(3−0)2+(5−0)2+(−2−z)2​

两边平方后,解得:

𝑧=9z=9

因此,所求的点为 𝑀(0,0,9)M(0,0,9)。

例题 6:

题目: 已知两点 𝐴(4,0,5)A(4,0,5) 和 𝐵(7,1,3)B(7,1,3),求与 AB 方向相同的单位向量 𝑡t。

解答:

𝐴𝐵=𝑂𝐵−𝑂𝐴=(7,1,3)−(4,0,5)=(3,1,−2)AB=OB−OA=(7,1,3)−(4,0,5)=(3,1,−2)

于是:

∣𝐴𝐵∣=32+12+(−2)2=14∣AB∣=32+12+(−2)2​=14​

单位向量:

𝑡=𝐴𝐵∣𝐴𝐵∣=(3,1,−2)14t=∣AB∣AB​=14​(3,1,−2)​

2. 方向角与方向余弦

非零向量 𝑟r 与三条坐标轴的夹角 𝛼α、𝛽β 和 𝛾γ 称为向量 𝑟r 的方向角,如图 8-15 所示。设 𝑂𝑀=𝑟=(𝑥,𝑦,𝑧)OM=r=(x,y,z),根据三角关系有:

cos⁡𝛼=𝑥∣𝑟∣cosα=∣r∣x​
cos⁡𝛽=𝑦∣𝑟∣cosβ=∣r∣y​
cos⁡𝛾=𝑧∣𝑟∣cosγ=∣r∣z​

因此:

(cos⁡𝛼,cos⁡𝛽,cos⁡𝛾)=(𝑥,𝑦,𝑧)∣𝑟∣(cosα,cosβ,cosγ)=∣r∣(x,y,z)​

称为向量 𝑟r 的方向余弦。可以看出,方向余弦组成的向量就是与 𝑟r 同方向的单位向量。并且满足:

cos⁡2𝛼+cos⁡2𝛽+cos⁡2𝛾=1cos2α+cos2β+cos2γ=1

例题 7:

题目: 已知两点 𝑀1(2,2,2)M1​(2,2,2​) 和 𝑀2(1,3,0)M2​(1,3,0),计算向量 𝑀1𝑀2M1​M2​ 的模、方向余弦和方向角。

解答:

𝑀1𝑀2=(1−2,3−2,0−2)=(−1,1,−2)M1​M2​=(1−2,3−2,0−2​)=(−1,1,−2​)

模:

∣𝑀1𝑀2∣=(−1)2+12+(−2)2=1+1+2=4=2∣M1​M2​∣=(−1)2+12+(−2​)2​=1+1+2​=4​=2

方向余弦:

cos⁡𝛼=−12,cos⁡𝛽=12,cos⁡𝛾=−22cosα=−21​,cosβ=21​,cosγ=−22​​

方向角:

𝛼=arccos⁡(−12),𝛽=arccos⁡(12),𝛾=arccos⁡(−22)α=arccos(−21​),β=arccos(21​),γ=arccos(−22​​)

3. 向量在轴上的投影

如果我们只考虑向量 𝑟=𝑂𝑀r=OM 与 x 轴的关系,如图 8-15 所示,过点 𝑀M 作与 x 轴垂直的平面,平面与 x 轴的交点即为点 𝑃P。此时,点 𝑃P 即为向量 𝑟r 在 x 轴上的投影。

一般地,设单位向量 𝑒e 与点 𝑂O 确定了 𝑢u 轴,如图 8-16 所示。对于任意向量 𝑟r,过点 𝑀M 作与 𝑢u 轴垂直的平面,平面与 𝑢u 轴的交点为点 𝑀′M′,此时点 𝑀′M′ 即为点 𝑀M 在 𝑢u 轴上的投影,向量 𝑂𝑀′OM′ 则是向量 𝑟r 在 𝑢u 轴上的分向量。设:

𝑂𝑀′=𝐴𝑒OM′=Ae

则数 𝐴A 为向量 𝑟r 在 𝑢u 轴上的投影,记作 Proj𝑢𝑟Proju​r 或 (𝑟)𝑢(r)u​。

性质:

  1. 投影的计算:
    Proj𝑢𝑟=∣𝑟∣cos⁡𝜙Proju​r=∣r∣cosϕ
    其中 𝜙ϕ 为向量 𝑟r 与 𝑢u 轴的夹角。

  2. 加法:
    Proj𝑢(𝑎+𝑏)=Proj𝑢𝑎+Proj𝑢𝑏Proju​(a+b)=Proju​a+Proju​b

  3. 数乘:
    Proj𝑢(𝜆𝑎)=𝜆Proj𝑢𝑎Proju​(λa)=λProju​a

例题 9:

题目: 设正方体的一条对角线为 𝑂𝑀OM,一条棱为 𝑂𝐴OA,且 ∣𝑂𝐴∣=𝑎∣OA∣=a。求 𝑂𝐴OA 在 𝑂𝑀OM 方向上的投影 Proj𝑂𝑀𝑂𝐴ProjOM​OA。

解答:

如图 8-17 所示,记 ∠𝑀𝑂𝐴=𝜙∠MOA=ϕ,有:

cos⁡𝜙=∣𝑂𝐴∣∣𝑂𝑀∣=𝑎3𝑎=13cosϕ=∣OM∣∣OA∣​=3​aa​=3​1​

于是:

Proj𝑂𝑀𝑂𝐴=∣𝑂𝐴∣cos⁡𝜙=𝑎⋅13=𝑎3ProjOM​OA=∣OA∣cosϕ=a⋅3​1​=3​a​

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  • 29
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏驰和徐策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值