8.2 数量积 向量积 混合积

 

 

第八章 向量代数与空间解析几何

第二节:数量积、向量积、混合积

一、两向量的数量积

设一物体在恒力 𝐹F 作用下沿直线从点 𝑀1M1​ 移动到点 𝑀2M2​,以 𝑠s 表示位移 𝑀1𝑀2M1​M2​。由物理学知道,力 𝐹F 所作的功为 𝑊=∣𝐹∣∣𝑠∣cos⁡𝜃,W=∣F∣∣s∣cosθ, 其中 𝜃θ 为 𝐹F 与 𝑠s 的夹角(图8-18)。

从这个问题看出,我们有时要对两个向量 𝑎a 和 𝑏b 作这样的运算,运算的结果是一个数,它等于 ∣𝑎∣∣a∣、∣𝑏∣∣b∣ 及它们的夹角 𝜃θ 的余弦的乘积。我们把它叫做向量 𝑎a 与 𝑏b 的数量积,记作 𝑎⋅𝑏a⋅b(图8-19),即 𝑎⋅𝑏=∣𝑎∣∣𝑏∣cos⁡𝜃.a⋅b=∣a∣∣b∣cosθ.

根据这个定义,上述问题中力所作的功 𝑊W 是力 𝐹F 与位移 𝑠s 的数量积,即 𝑊=𝐹⋅𝑠.W=F⋅s.

由于 ∣𝑏∣cos⁡𝜃=∣𝑏∣cos⁡(𝑎,𝑏)∣b∣cosθ=∣b∣cos(a,b),当 𝑎≠0a=0 时,是向量 𝑏b 在向量 𝑎a 的方向上的投影,用 Prj⁡𝑎𝑏Prja​b 来表示这个投影,便有 𝑎⋅𝑏=∣𝑎∣Prj⁡𝑎𝑏,a⋅b=∣a∣Prja​b, 同理,当 𝑏≠0b=0 时有 𝑎⋅𝑏=∣𝑏∣Prj⁡𝑏𝑎.a⋅b=∣b∣Prjb​a. 这就是说,两向量的数量积等于其中一个向量的模和另一个向量在这向量的方向上的投影的乘积。

由数量积的定义可以推得:

  1. 𝑎⋅𝑎=∣𝑎∣2a⋅a=∣a∣2

这是因为夹角 𝜃=0θ=0,所以 𝑎⋅𝑎=∣𝑎∣2cos⁡0=∣𝑎∣2.a⋅a=∣a∣2cos0=∣a∣2.

  1. 对于两个非零向量 𝑎a、𝑏b,如果 𝑎⋅𝑏=0a⋅b=0,那么 𝑎⊥𝑏a⊥b;反之,如果 𝑎⊥𝑏a⊥b,那么 𝑎⋅𝑏=0a⋅b=0。

这是因为如果 𝑎⋅𝑏=0a⋅b=0,由于 ∣𝑎∣≠0∣a∣=0、∣𝑏∣≠0∣b∣=0,所以 cos⁡𝜃=0cosθ=0,从而 𝜃=𝜋2θ=2π​,即 𝑎⊥𝑏a⊥b;反之,如果 𝑎⊥𝑏a⊥b,那么由于可以认为零向量与任何向量都垂直,因此,上述结论可叙述为:向量 𝑎⊥𝑏a⊥b 的充分必要条件是 𝑎⋅𝑏=0a⋅b=0。

数量积符合下列运算规律:

  1. 交换律 𝑎⋅𝑏=𝑏⋅𝑎a⋅b=b⋅a。

    证:根据定义有 𝑎⋅𝑏=∣𝑎∣∣𝑏∣cos⁡(𝑎,𝑏),a⋅b=∣a∣∣b∣cos(a,b), 𝑏⋅𝑎=∣𝑏∣∣𝑎∣cos⁡(𝑏,𝑎),b⋅a=∣b∣∣a∣cos(b,a), 而 ∣𝑎∣∣𝑏∣=∣𝑏∣∣𝑎∣,且cos⁡(𝑎,𝑏)=cos⁡(𝑏,𝑎),∣a∣∣b∣=∣b∣∣a∣,且cos(a,b)=cos(b,a), 所以 𝑎⋅𝑏=𝑏⋅𝑎.a⋅b=b⋅a.

  2. 分配律 (𝑎+𝑏)⋅𝑐=𝑎⋅𝑐+𝑏⋅𝑐(a+b)⋅c=a⋅c+b⋅c。

    证:当 𝑐=0c=0 时,上式显然成立;当 𝑐≠0c=0 时,有 (𝑎+𝑏)⋅𝑐=∣𝑐∣Prj⁡𝑐(𝑎+𝑏),(a+b)⋅c=∣c∣Prjc​(a+b), 由投影性质,可知 Prj⁡𝑐(𝑎+𝑏)=Prj⁡𝑐𝑎+Prj⁡𝑐𝑏,Prjc​(a+b)=Prjc​a+Prjc​b, 所以 (𝑎+𝑏)⋅𝑐=∣𝑐∣(Prj⁡𝑐𝑎+Prj⁡𝑐𝑏)=∣𝑐∣Prj⁡𝑐𝑎+∣𝑐∣Prj⁡𝑐𝑏=𝑎⋅𝑐+𝑏⋅𝑐.(a+b)⋅c=∣c∣(Prjc​a+Prjc​b)=∣c∣Prjc​a+∣c∣Prjc​b=a⋅c+b⋅c.

  3. 结合律 (𝜆𝑎)⋅𝑏=𝜆(𝑎⋅𝑏)(λa)⋅b=λ(a⋅b),其中 𝜆λ 为数。

    证:当 𝑏=0b=0 时,上式显然成立;当 𝑏≠0b=0 时,按投影性质,可得 (𝜆𝑎)⋅𝑏=∣𝑏∣Prj⁡𝑏(𝜆𝑎)=∣𝑏∣𝜆Prj⁡𝑏𝑎=𝜆∣𝑏∣Prj⁡𝑏𝑎=𝜆(𝑎⋅𝑏).(λa)⋅b=∣b∣Prjb​(λa)=∣b∣λPrjb​a=λ∣b∣Prjb​a=λ(a⋅b).

由上述结合律,利用交换律,容易推得 𝑎⋅(𝜆𝑏)=𝜆(𝑎⋅𝑏)a⋅(λb)=λ(a⋅b) 及 (𝜆𝑎)⋅(𝜇𝑏)=𝜆𝜇(𝑎⋅𝑏).(λa)⋅(μb)=λμ(a⋅b). 这是因为 𝑎⋅(𝜆𝑏)=(𝜆𝑏)⋅𝑎=𝜆(𝑏⋅𝑎)=𝜆(𝑎⋅𝑏),a⋅(λb)=(λb)⋅a=λ(b⋅a)=λ(a⋅b), (𝜆𝑎)⋅(𝜇𝑏)=𝜆[𝑎⋅(𝜇𝑏)]=𝜆[𝜇(𝑎⋅𝑏)]=𝜆𝜇(𝑎⋅𝑏).(λa)⋅(μb)=λ[a⋅(μb)]=λ[μ(a⋅b)]=λμ(a⋅b).

例1 试用向量证明三角形的余弦定理

设有三角形 △ABC,向量 𝑎=𝐵𝐶→a=BC、𝑏=𝐶𝐴→b=CA、𝑐=𝐴𝐵→c=AB。根据向量加法,有 𝑎+𝑏+𝑐=0,a+b+c=0, 即 𝑎=−(𝑏+𝑐).a=−(b+c).

利用数量积的定义,计算 𝑎⋅𝑎a⋅a: 𝑎⋅𝑎=[−(𝑏+𝑐)]⋅[−(𝑏+𝑐)]=(𝑏+𝑐)⋅(𝑏+𝑐).a⋅a=[−(b+c)]⋅[−(b+c)]=(b+c)⋅(b+c). 应用分配律,有 𝑎⋅𝑎=𝑏⋅𝑏+2𝑏⋅𝑐+𝑐⋅𝑐.a⋅a=b⋅b+2b⋅c+c⋅c. 即 ∣𝑎∣2=∣𝑏∣2+2∣𝑏∣∣𝑐∣cos⁡𝜃+∣𝑐∣2,∣a∣2=∣b∣2+2∣b∣∣c∣cosθ+∣c∣2, 其中 𝜃θ 为 𝑏b 与 𝑐c 的夹角。上述等式即为三角形的余弦定理。

 

 

第八章 向量代数与空间解析几何

第二节:数量积、向量积、混合积

一、两向量的数量积

设在三角形 △𝐴𝐵𝐶△ABC 中,∠𝐵𝐶𝐴=𝜃∠BCA=θ(图8-20),边 𝐵𝐶=𝑎BC=a,𝐶𝐴=𝑏CA=b,𝐴𝐵=𝑐AB=c。要证明:

从而

由 ∣𝑎∣=𝑎∣a∣=a,∣𝑏∣=𝑏∣b∣=b,∣𝑐∣=𝑐∣c∣=c 及 (𝑎,𝑏)=𝜃(a,b)=θ,即得

数量积的坐标表示式

因为 𝑖i、𝑗j 和 𝑘k 互相垂直,所以 𝑖⋅𝑗=𝑗⋅𝑘=𝑘⋅𝑖=0i⋅j=j⋅k=k⋅i=0,又因为 𝑖i、𝑗j 和 𝑘k 的模均为 1,所以 𝑖⋅𝑖=𝑗⋅𝑗=𝑘⋅𝑘=1i⋅i=j⋅j=k⋅k=1。因而得:

这就是两个向量的数量积的坐标表示式。

因为 𝑎⋅𝑏=∣𝑎∣∣𝑏∣cos⁡𝜃a⋅b=∣a∣∣b∣cosθ,所以当 𝑎a 与 𝑏b 都不是零向量时,有:

将数量积的坐标表示式及向量的模的坐标表示式代入上式,就得:

这就是两向量夹角余弦的坐标表示式。

例2:已知三点 𝑀(1,1,1)M(1,1,1)、𝐴(2,2,1)A(2,2,1) 和 𝐵(2,1,2)B(2,1,2),求 ∠𝐴𝑀𝐵∠AMB

解:作向量 𝑀𝐴MA 及 𝑀𝐵MB,∠𝐴𝑀𝐵∠AMB 就是向量 𝑀𝐴MA 与 𝑀𝐵MB 的夹角。这里, 𝑀𝐴=(1,1,0),MA=(1,1,0), 𝑀𝐵=(1,0,1).MB=(1,0,1).

从而

代入两向量夹角余弦的表达式,得:

由此得:

例3:流体流过平面的质量计算

设液体流过平面 𝑆S 上面积为 𝐴A 的一个区域,液体在这区域上各点处的流速均为 𝑣v(常向量)。设 𝑛n 为垂直于 𝑆S 的单位向量(图8-21(a)),计算单位时间内经过这区域流向 𝑛n 所指一侧的液体的质量 𝑚m(液体的密度为 𝜌ρ)。

解:单位时间内流过这区域的液体组成一个底面积为 𝐴A、斜高为 ∣𝑣∣∣v∣ 的斜柱体(图8-21(b))。这柱体的斜高与底面的垂线的夹角就是 𝑣v 与 𝑛n 的夹角 𝜃θ,所以这柱体的高为

从而,单位时间内经过这区域流向 𝑛n 所指一侧的液体的质量为 𝑚=𝜌𝐴(𝑣⋅𝑛).m=ρA(v⋅n).

 

 

二、两向量的向量积

在研究物体转动问题时,不但要考虑这物体所受的力,还要分析这些力所产生的力矩。下面就举一个简单的例子来说明表达力矩的方法。

力矩的概念

设 𝑂O 为一根杠杆 𝐿L 的支点。有一个力 𝐹F 作用于这杠杆上 𝑃P 点处。𝐹F 与 𝑂𝑃OP 的夹角为 𝜃θ(如图8-22所示)。由力学规定,力 𝐹F 对支点 𝑂O 的力矩是一向量 𝑀M,它的模 ∣𝑀∣=∣𝑂𝑃∣∣𝐹∣sin⁡𝜃∣M∣=∣OP∣∣F∣sinθ,而 𝑀M 的方向垂直于 𝑂𝑃OP 与 𝐹F 所决定的平面,𝑀M 的指向是按右手规则从 𝑂𝑃OP 以不超过 𝜋π 的角转向 𝐹F 来确定的,即当右手的四个手指从 𝑂𝑃OP 以不超过 𝜋π 的角转向 𝐹F 握拳时,大拇指的指向就是 𝑀M 的指向(如图8-23所示)。

这种由两个已知向量按上面的规则来确定另一个向量的情况,在其他力学和物理问题中也会遇到。于是从中抽象出两个向量的向量积概念。

向量积的定义

设向量 𝑐c 由两个向量 𝑎a 与 𝑏b 按下列方式定出: ∣𝑐∣=∣𝑎∣∣𝑏∣sin⁡𝜃∣c∣=∣a∣∣b∣sinθ 其中 𝜃θ 为 𝑎a 和 𝑏b 间的夹角;𝑐c 的方向垂直于 𝑎a 与 𝑏b 所决定的平面(即 𝑐c 既垂直于 𝑎a,又垂直于 𝑏b),𝑐c 的指向按右手规则从 𝑎a 转向 𝑏b 来确定(如图8-24所示),向量 𝑐c 叫做向量 𝑎a 与 𝑏b 的向量积,记作: 𝑐=𝑎×𝑏c=a×b

按此定义,上面的力矩 𝑀M 等于 𝑂𝑃OP 与 𝐹F 的向量积,即 𝑀=𝑂𝑃×𝐹M=OP×F。

向量积的性质

由向量积的定义可以推得:

  1. 𝑎×𝑎=0a×a=0。这是因为夹角 𝜃=0θ=0,所以 ∣𝑎×𝑎∣=∣𝑎∣2sin⁡0=0∣a×a∣=∣a∣2sin0=0。
  2. 对于两个非零向量 𝑎a 和 𝑏b,如果 𝑎×𝑏=0a×b=0,那么 𝑎∥𝑏a∥b;反之,如果 𝑎∥𝑏a∥b,那么 𝑎×𝑏=0a×b=0。这是因为如果 𝑎×𝑏=0a×b=0,由于 ∣𝑎∣≠0∣a∣=0 和 ∣𝑏∣≠0∣b∣=0,那么必有 sin⁡𝜃=0sinθ=0,于是 𝜃=0θ=0 或 𝜋π,即 𝑎∥𝑏a∥b;反之,如果 𝑎∥𝑏a∥b,那么 𝜃=0θ=0 或 𝜋π,于是 sin⁡𝜃=0sinθ=0,从而 ∣𝑎×𝑏∣=0∣a×b∣=0,即 𝑎×𝑏=0a×b=0。

由于可以认为零向量与任何向量都平行,因此,上述结论可叙述为:向量 𝑎∥𝑏a∥b 的充分必要条件是 𝑎×𝑏=0a×b=0。

向量积的运算规律

向量积符合下列运算规律:

  1. 𝑏×𝑎=−𝑎×𝑏b×a=−a×b。这是因为按右手规则从 𝑏b 转向 𝑎a 定出的方向恰好与按右手规则从 𝑎a 转向 𝑏b 定出的方向相反。它表明交换律对向量积不成立。
  2. 分配律:(𝑎+𝑏)×𝑐=𝑎×𝑐+𝑏×𝑐(a+b)×c=a×c+b×c。
  3. 向量积还符合如下的结合律:(𝜆𝑎)×𝑏=𝑎×(𝜆𝑏)=𝜆(𝑎×𝑏)(λa)×b=a×(λb)=λ(a×b)(𝜆λ 为数)。

向量积的坐标表示

下面来推导向量积的坐标表示式。设 𝑎=𝑎1𝑖+𝑎2𝑗+𝑎3𝑘a=a1​i+a2​j+a3​k,𝑏=𝑏1𝑖+𝑏2𝑗+𝑏3𝑘b=b1​i+b2​j+b3​k。那么,按上述运算规律,得: 𝑎×𝑏=(𝑎1𝑖+𝑎2𝑗+𝑎3𝑘)×(𝑏1𝑖+𝑏2𝑗+𝑏3𝑘)a×b=(a1​i+a2​j+a3​k)×(b1​i+b2​j+b3​k) =𝑎1(𝑏1𝑖+𝑏2𝑗+𝑏3𝑘)×𝑖+𝑎2(𝑏1𝑖+𝑏2𝑗+𝑏3𝑘)×𝑗+𝑎3(𝑏1𝑖+𝑏2𝑗+𝑏3𝑘)×𝑘=a1​(b1​i+b2​j+b3​k)×i+a2​(b1​i+b2​j+b3​k)×j+a3​(b1​i+b2​j+b3​k)×k

因为 𝑖×𝑖=𝑗×𝑗=𝑘×𝑘=0i×i=j×j=k×k=0,𝑖×𝑗=𝑘i×j=k,𝑗×𝑘=𝑖j×k=i,𝑘×𝑖=𝑗k×i=j,𝑗×𝑖=−𝑘j×i=−k,𝑘×𝑗=−𝑖k×j=−i,和 𝑖×𝑘=−𝑗i×k=−j,所以: 𝑎×𝑏=(𝑎2𝑏3−𝑎3𝑏2)𝑖+(𝑎3𝑏1−𝑎1𝑏3)𝑗+(𝑎1𝑏2−𝑎2𝑏1)𝑘a×b=(a2​b3​−a3​b2​)i+(a3​b1​−a1​b3​)j+(a1​b2​−a2​b1​)k

 

 

解题详解

例4:向量叉乘计算

设向量 𝑎=(2,1,−1)a=(2,1,−1) 和向量 𝑏=(1,−1,2)b=(1,−1,2),计算叉乘 𝑎×𝑏a×b。

解法:

叉乘的计算公式是: 𝑎×𝑏=(𝑎2𝑏3−𝑎3𝑏2,𝑎3𝑏1−𝑎1𝑏3,𝑎1𝑏2−𝑎2𝑏1)a×b=(a2​b3​−a3​b2​,a3​b1​−a1​b3​,a1​b2​−a2​b1​)

将 𝑎a 和 𝑏b 的坐标代入公式得: 𝑎×𝑏=(1⋅2−(−1)⋅(−1),−1⋅1−2⋅(−1),2⋅(−1)−1⋅1)=(2−1,−1+2,−2−1)=(1,1,−3)a×b=(1⋅2−(−1)⋅(−1),−1⋅1−2⋅(−1),2⋅(−1)−1⋅1)=(2−1,−1+2,−2−1)=(1,1,−3)

例5:三角形面积计算

已知三角形ABC的顶点分别是 𝐴(1,2,3)A(1,2,3), 𝐵(3,4,5)B(3,4,5),和 𝐶(2,4,7)C(2,4,7),求三角形ABC的面积。

解法:

首先,计算向量 𝐴𝐵AB 和 𝐴𝐶AC: 𝐴𝐵=(3−1,4−2,5−3)=(2,2,2)AB=(3−1,4−2,5−3)=(2,2,2) 𝐴𝐶=(2−1,4−2,7−3)=(1,2,4)AC=(2−1,4−2,7−3)=(1,2,4)

向量积 𝐴𝐵×𝐴𝐶AB×AC: 𝐴𝐵×𝐴𝐶=(2⋅4−2⋅2,2⋅1−2⋅4,2⋅2−2⋅1)=(8−4,2−8,4−2)=(4,−6,2)AB×AC=(2⋅4−2⋅2,2⋅1−2⋅4,2⋅2−2⋅1)=(8−4,2−8,4−2)=(4,−6,2)

三角形ABC的面积 𝑆S 为向量积的模除以2: 𝑆=1242+(−6)2+22=1216+36+4=1256=214S=21​42+(−6)2+22​=21​16+36+4​=21​56​=214​

例6:刚体的线速度计算

设刚体以等角速度 𝜔ω 绕1轴旋转,计算刚体上一点M的线速度。

解法:

设点M到旋转轴1的距离为 𝑎a,在1轴上任取一点0作向量 𝑟=𝑂𝑁r=ON。向量 𝜔ω 和 𝑟r 的夹角为 𝜃θ,故 𝜔ω 与 𝑟r 的叉乘给出线速度 𝑣v: 𝑣=𝜔×𝑟v=ω×r

根据右手规则和向量乘法的物理意义,线速度 𝑣v 的大小为 𝜔⋅𝑎ω⋅a( 𝑎=∣𝑟∣sin⁡𝜃a=∣r∣sinθ),且 𝑣v 的方向垂直于通过M点与1轴的平面。

 

 

三、向量的混合积

在向量运算中,混合积是一个非常重要的概念,它涉及三个向量的组合运算。通过这个单一的值,我们可以解释和推导多个几何和物理的性质。本文将详细解释向量的混合积的概念,计算方法以及它的几何意义。

定义和计算方法

向量的混合积涉及三个向量:𝑎a, 𝑏b, 和 𝑐c。首先计算向量 𝑎a 和 𝑏b 的向量积 𝑎×𝑏a×b,然后将此向量积与第三个向量 𝑐c 进行数量积,即 (𝑎×𝑏)⋅𝑐(a×b)⋅c。这个数量积就被称为向量 𝑎a, 𝑏b, 𝑐c 的混合积,记作 [𝑎𝑏𝑐][abc]。

坐标表示式

假设向量 𝑎=(𝑎1,𝑎2,𝑎3)a=(a1​,a2​,a3​),𝑏=(𝑏1,𝑏2,𝑏3)b=(b1​,b2​,b3​),和 𝑐=(𝑐1,𝑐2,𝑐3)c=(c1​,c2​,c3​),混合积 [𝑎𝑏𝑐][abc] 可以通过如下行列式表示:

这个行列式的计算给出了三个向量构成的平行六面体的有向体积。

几何意义

向量的混合积 [𝑎𝑏𝑐][abc] 的绝对值表示以向量 𝑎a, 𝑏b, 𝑐c 为棱的平行六面体的体积。如果这三个向量构成一个右手系(即,如果你用右手将 𝑎a 转向 𝑏b,大拇指指向 𝑐c 的方向),那么混合积的符号是正的;如果构成一个左手系,则符号是负的。

应用

共面性检测

向量的混合积还可以用来检测三个向量是否共面。如果 [𝑎𝑏𝑐]=0[abc]=0,则三向量 𝑎a, 𝑏b, 𝑐c 共面;反之,如果它们不共面,混合积则不为零。

四面体的体积

混合积的一个重要应用是计算空间中四点构成的四面体的体积。例如,已知四点 𝐴A, 𝐵B, 𝐶C, 𝐷D,四面体 𝐴𝐵𝐶𝐷ABCD 的体积 𝑉V 可以通过以下公式计算:

其中 𝐴𝐵AB, 𝐴𝐶AC, 和 𝐴𝐷AD 是以点 𝐴A 为起点到点 𝐵B, 𝐶C, 和 𝐷D 的向量。

总结

向量的混合积不仅提供了一个计算三维几何体积的强大工具,而且还是检测向量共面性的有效方法。通过学习和应用这些概念,可以更深入地理解空间向量的性质及其在解决实际问题中的应用。

 

 

 

 

 

 

 

  • 30
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏驰和徐策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值