7.3 非正弦波发生电路
在实用电路中,除了常见的正弦波外,还有矩形波、三角波、锯齿波、尖顶波和阶梯波,如图7.3.1所示。
(a) 矩形波
(b) 三角波
(c) 锯齿波
(d) 尖顶波
(e) 阶梯波
本节主要讲述模拟电子电路中常用的矩形波、三角波和锯齿波三种非正弦波波形发生电路的组成、工作原理、波形分析和主要参数以及波形变换电路的原理。
7.3.1 矩形波发生电路
矩形波发生电路是其它非正弦波发生电路的基础。例如,若方波电压加在积分运算电路的输入端,则输出就获得三角波电压;若改变积分电路正向积分和反向积分时间常数,使某一方向的积分常数趋于零,则可获得锯齿波。
一、电路组成及工作原理
因为矩形波电压只有两种状态,不是高电平,就是低电平,所以电压比较器是它的重要组成部分;因为产生振荡,就是要求输出的两种状态自动地相互转换,所以电路的输出必须通过一定的方式引回到它的输入,以控制输出状态的转换;因为输出状态应按一定的时间间隔交替变化,即产生周期性变化,所以电路中要有延迟环节来确定每种状态维持的时间。
图7.3.2所示为矩形波发生电路,它由反相输入的滞回比较器和RC电路组成。RC回路作为延迟环节,C上电压作为滞回比较器的输入,通过RC充放电实现输出状态的自动转换。
因而电压传输特性如图7.3.3所示。
设某一时刻输出电压 𝑢𝑜=+𝑈2uo=+U2,则同相输入端电位 𝑢+=+𝑈1u+=+U1。 𝑢𝑜uo 通过 𝑅1R1 对电容 𝐶C 正向充电,如图中实线箭头所示。反相输入端电位 𝑢−u− 随时间 𝑡t 增长而逐渐升高,当 𝑡t 趋近于无穷时,𝑢−u− 趋于 +𝑈2+U2;但是,一旦 𝑢−=+𝑈1u−=+U1,再稍增大,𝑢𝑜uo 就从 +𝑈2+U2 跃变为 −𝑈2−U2,与此同时 𝑢+u+ 从 +𝑈1+U1 跃变为 −𝑈1−U1。随后,𝑢𝑜uo 又通过 𝑅1R1 对电容 𝐶C 反向充电,或者说放电,如图中虚线箭头所示。反相输入端电位 𝑢−u− 随时间 𝑡t 增长而逐渐降低,当 𝑡t 趋近于无穷时,𝑢−u− 趋于 −𝑈2−U2;但是,一旦 𝑢−=−𝑈1u−=−U1,再稍减小,𝑢𝑜uo 就从 −𝑈2−U2 跃变为 +𝑈2+U2,与此同时 𝑢+u+ 从 −𝑈1−U1 跃变为 +𝑈1+U1,电容又开始正向充电。上述过程周而复始,电路产生了自激振荡。
二、波形分析及主要参数
由于图7.3.2所示电路中电容正向充电与反向充电的时间常数均为RC,且充电的总幅值也相等,因此在一个周期内,输出电压 𝑢𝑜=+𝑈2uo=+U2 的时间与 𝑢𝑜=−𝑈2uo=−U2 的时间相等, 𝑢𝑜uo 为对称的方波,所以该电路也称为方波发生电路。电容上电压 𝑢𝑐uc(即集成运放反相输入端电位 𝑢−u−)和电路输出电压 𝑢𝑜uo 波形如图7.3.4所示。矩形波的宽度 𝑇1T1 与周期 𝑇T 之比称为占空比,因此 𝑢𝑜uo 是占空比为1/2的矩形波。
根据电容上电压波形可知,在1/2周期内,电容充电的起始值为 - 𝑈1U1,终了值为 + 𝑈1U1,时间常数为 𝑅2𝐶R2C。当时间 𝑡t 趋于无穷时, 𝑢𝑐uc 趋于 + 𝑈2U2。利用一阶RC电路的三要素法可列出方程:
将式(7.3.1)代入上式,即可求出振荡周期:
振荡频率:
通过以上分析可知,调整电压比较器的电路参数 𝑅1R1 和 𝑅2R2 可以改变 𝑢𝑐uc 的幅值,调整电阻 𝑅1R1、𝑅2R2、𝑅R 和电容 𝐶C 的数值可以改变电路的振荡频率。而要调整输出电压 𝑢𝑜uo 的振幅,则需要更换稳压管以改变 𝑈2U2,此时 𝑢𝑜uo 的幅值也将随之变化。
三、占空比可调电路
通过对方波发生电路的分析,可以想象,若要改变输出电压的占空比,就必须使电容正向充电和反向充电的时间常数不同,即两个充电回路的参数不同。利用二极管的单向导电性可以引导电流流经不同的通路,占空比可调的矩形波发生电路如图7.3.5(a)所示,电容上电压和输出电压波形如图(b)所示。
当 𝑢𝑜=+𝑈2uo=+U2 时,电流通过 𝑅1R1、𝐷1D1 和 𝑅R 对电容 𝐶C 正向充电,若忽略二极管导通时的等效电阻,则时间常数:
当 𝑢𝑜=−𝑈2uo=−U2 时,电流通过 𝑅2R2、𝐷2D2 和 𝑅R 对电容 𝐶C 反向充电,若忽略二极管导通时的等效电阻,则时间常数:
利用一阶RC电路的三要素法可以解出:
式(7.3.4)表明,改变电位器的滑动端可以改变占空比,但周期不变。占空比为:
【例7.3.1】
在图7.3.5(a)所示电路中,已知 𝑅1=𝑅2=25 𝑘ΩR1=R2=25kΩ, 𝑅3=5 𝑘ΩR3=5kΩ, 𝑅=100 𝑘ΩR=100kΩ, 𝐶=0.1 𝜇𝐹C=0.1μF, ±𝑈2=±8 𝑉±U2=±8V。试求:
- 输出电压的幅值和振荡频率约为多少;
- 占空比的调节范围约为多少;
- 若 𝐷1D1 断路,则产生什么现象。
解:
- 输出电压 𝑢𝑜=±8 𝑉uo=±8V。振荡周期:
振荡频率 𝑓=1𝑇=83 𝐻𝑧f=T1=83Hz。
- 根据式(7.3.5),将 𝑅3R3 的最小值0代入,可得 𝑞q 的最小值:
将 𝑅3R3 的最大值100kΩ代入,可得 𝑞q 的最大值:
占空比
- 若 𝐷1D1 断路,则电路不振荡,输出电压 𝑢𝑜uo 恒为 + 𝑈2U2。因为在 𝐷1D1 断路的瞬间,若 𝑢𝑜=+𝑈2uo=+U2,电容电压将不变,则 𝑢𝑜uo 保持 + 𝑈2U2 不变;若 𝑢𝑜=−𝑈2uo=−U2,则电容仅有反向充电回路,必将使 𝑢𝑐uc < 𝑢+u+,导致 𝑢𝑜=+𝑈2uo=+U2。
7.3.2 三角波发生电路
一、电路的组成
在方波发生电路中,当滞回比较器的阈值电压数值较小时,可将电容两端的电压看成近似三角波。但是,一方面这个三角波的线性度较差,另一方面带负载后将使电路的性能产生变化。实际上,只要将方波电压作为积分运算电路的输入,在其输出就得到三角波电压,如图7.3.6(a)所示。
(a) 电路
(b) 波形分析
当方波发生电路的输出电压 𝑢𝑜=+𝑈2uo=+U2 时,积分运算电路的输出电压 𝑢𝑐uc 将线性下降;而当 𝑢𝑜=−𝑈2uo=−U2 时,𝑢𝑐uc 将线性上升;波形如图(b)所示。
由于图7.3.6(a)所示电路中存在RC电路和积分电路两个延迟环节,在实用电路中,将它们“合二为一”,即去掉方波发生电路中的RC回路,使积分运算电路既作为延迟环节,又作为方波变三角波电路,滞回比较器和积分运算电路的输出互为另一个电路的输入,如图7.3.7所示。
二、工作原理
在图7.3.7所示三角波发生电路中,虚线左边为同相输入滞回比较器,右边为积分运算电路。对于由多个集成运放组成的应用电路,一般应首先分析每个集成运放所组成电路输出与输入的函数关系,然后分析各电路间的相互联系,在此基础上得出电路的功能。
图中滞回比较器的输出电压 𝑢𝑜=±𝑈2uo=±U2,它的输入电压是积分电路的输出电压 𝑢𝑐uc。根据叠加原理,集成运放 𝐴1A1 同相输入端的电位:
令 𝑢+=𝑢−=0u+=u−=0,则阈值电压:
因此,滞回比较器的电压传输特性如图7.3.8所示。
积分电路的输入电压是滞回比较器的输出电压 𝑢𝑜uo,而 𝑢𝑜uo 不是 +𝑈2+U2,就是 −𝑈2−U2,所以输出电压的表达式为:
式中 𝑢𝑐(𝑡0)uc(t0) 为初态时的输出电压。设初态时 𝑢𝑜uo 正好从 −𝑈2−U2 跃变为 +𝑈2+U2,则式应写成:
积分电路反向积分, 𝑢𝑐uc 随时间的增长线性下降,根据图7.3.8所示电压传输特性,一旦 𝑢𝑐=−𝑈1uc=−U1,再稍减小,𝑢𝑜uo 将从 +𝑈2+U2 跃变为 −𝑈2−U2。使得式变为:
𝑢𝑐(𝑡1)uc(t1) 为 𝑢𝑜uo 产生跃变时的输出电压。积分电路正向积分, 𝑢𝑐uc 随时间的增长线性增大,根据图7.3.8所示电压传输特性,一旦 𝑢𝑐=+𝑈1uc=+U1,再稍增大,𝑢𝑜uo 将从 −𝑈2−U2 跃变为 +𝑈2+U2,回到初态,积分电路又开始反向积分。电路重复上述过程,因此产生自激振荡。
由以上分析可知,𝑢𝑐uc 是三角波,幅值为 ±𝑈1±U1; 𝑢𝑜uo 是方波,幅值为 ±𝑈2±U2,如图7.3.9所示,因此也可称图7.3.7所示电路为三角波-方波发生电路。由于积分电路引入了深度电压负反馈,所以在负载电阻相当大的变化范围里,三角波电压几乎不变。
三、振荡频率
根据图7.3.9所示波形可知,正向积分的起始值为 −𝑈1−U1,终了值为 +𝑈1+U1,积分时间为 1/2 周期,将它们代入式:
经整理可得出振荡周期:
振荡频率:
调节电路中 𝑅1R1、𝑅2R2、𝑅3R3 的阻值和 𝐶C 的容量,可以改变振荡频率;而调节 𝑅1R1 和 𝑅2R2 的阻值,可以改变三角波的幅值。
7.3.3 锯齿波发生电路
如果图7.3.7所示积分电路的正向积分的时间常数远大于反向积分的时间常数,或者反向积分的时间常数远大于正向积分的时间常数,那么输出电压 𝑢𝑜uo 上升和下降的斜率相差很多,就可以获得锯齿波。利用二极管的单向导电性使积分电路两个方向的积分通路不同,就可得到锯齿波发生电路,如图7.3.10(a)所示。图中 𝑅3R3 的阻值远小于 𝑅4R4。
(a) 电路
(b) 波形分析
设二极管导通时的等效电阻可忽略不计,电位器的滑动端移到最上端。当 𝑢𝑜=+𝑈2uo=+U2 时,𝐷1D1 导通,𝐷2D2 截止,输出电压的表达式为:
𝑢𝑐uc 随时间线性下降。当 𝑢𝑜=−𝑈2uo=−U2 时,𝐷2D2 导通,𝐷1D1 截止,输出电压的表达式为:
因此,𝑢𝑐uc 随时间线性上升。由于 𝑅3≪𝑅4R3≪R4,𝑢𝑐uc 和 𝑢𝑜uo 的波形如图7.3.10(b)所示。根据三角波发生电路的振荡周期的计算方法,可得出下降时间和上升时间,分别为:
所以振荡周期:
因为 𝑅3R3 的阻值远小于 𝑅4R4,所以可以认为 𝑇≈𝑇2T≈T2。根据 𝑇1T1 和 𝑇T 的表达式,可得 𝑢𝑐uc 的占空比:
调整 𝑅1R1 和 𝑅2R2 的阻值可以改变锯齿波的幅值;调整 𝑅1R1、𝑅2R2 和 𝑅3R3 的阻值以及 𝐶C 的容量,可以改变振荡周期;调整电位器滑动端的位置,可以改变 𝑢𝑐uc 的占空比以及锯齿波上升和下降的斜率。
7.3.4 波形变换电路
从三角波和锯齿波发生电路的分析可知,这些电路的基本思路是将一种形状的波形变换成另一种形状的波形,即实现波形变换。由于电路中两个组成部分的输出互为另一部分的输入,因此产生了自激振荡。实际上,可以利用基本电路来实现波形的变换。例如,利用积分电路将方波变为三角波,利用微分电路将三角波变为方波,利用电压比较器将正弦波变为矩形波,利用模拟乘法器将正弦波变为二倍频等。
这里介绍采用特殊方法来实现三角波变锯齿波电路和三角波变正弦波电路。
一、三角波变锯齿波电路
三角波电压如图7.3.11(a)所示,经波形变换电路所获得的二倍频锯齿波电压如图(b)所示。分析两个波形的关系可知,当三角波上升时,锯齿波与之相等,即:
当三角波下降时,锯齿波与之相反,即:
因此,波形变换电路应为比例运算电路,当三角波上升时,比例系数为1;当三角波下降时,比例系数为-1。利用可控的电子开关,可以实现比例系数的变化。
三角波变锯齿波电路如图7.3.12所示,其中电子开关为示意图,𝑢𝑐uc 是电子开关的控制电压,它与输入三角波电压的对应关系如图中所示。当 𝑢𝑐uc 为低电平时,开关断开;当 𝑢𝑐uc 为高电平时,开关闭合。分析含有电子开关的电路时,应分别求出开关断开和闭合两种情况下输出和输入间的函数关系,而且为了简单起见,常常忽略开关断开时的漏电流和闭合时的压降。
设开关断开,则 𝑢𝑖𝑛uin 同时作用于集成运放的反相输入端和同相输入端,根据虚短和虚断的概念有:
列N点电流方程:
将 𝑅1=𝑅R1=R、𝑅2=𝑅/2R2=R/2、𝑅3=𝑅R3=R 及上式代入方程,解得:
设开关闭合,则集成运放的同相输入端和反相输入端为虚地,𝑢+=𝑢−=0 𝑉u+=u−=0V,电阻 𝑅3R3 中电流为零,等效电路是反相比例运算电路,因此:
式(7.3.12)和式(7.3.13)正好符合上面所述的要求,从而实现了将三角波转换成锯齿波。在实际电路中,可以利用图7.3.13所示电路取代图7.3.12所示电路中的开关,在电路参数一定的情况下,控制电压的幅值应足够大,以保证管子工作在开关状态;可以利用微分运算电路将输入的三角波转换为方波,用来作为电子开关的控制信号。
二、三角波变正弦波电路
1. 滤波法
在三角波电压为固定频率或频率变化范围很小的情况下,可以考虑采用低通滤波(或带通滤波)的方法将三角波变换为正弦波,电路框图如图7.3.14(a)所示。输入电压和输出电压的波形如图(b)所示, 𝑢𝑜𝑢𝑡uout 的频率等于 𝑢𝑖𝑛uin 基波的频率。
(a) 电路框图
(b) 波形分析
将三角波按傅里叶级数展开:
其中 𝑈0U0 是三角波的幅值。根据上式可知,低通滤波器的通带截止频率应大于三角波的基波频率且小于三角波的三次谐波频率。例如,若三角波的频率范围为100~200 Hz,则低通滤波器的通带截止频率可取250 Hz,带通滤波器的通频带可取50~250 Hz。但是,如果三角波的最高频率超过其最低频率的三倍,就要考虑采用折线法来实现变换了。
2. 折线法
比较三角波和正弦波的波形可以发现,在正弦波从零逐渐增大到峰值的过程中,与三角波的差别越来越大;即零附近的差别最小,峰值附近的差别最大。因此,根据正弦波与三角波的差别,将三角波分成若干段,按不同的比例衰减,就可以得到近似于正弦波的折线化波形,如图7.3.15所示。
根据上述思路,应采用比例系数可以自动调节的运算电路。利用二极管和电阻构成的反馈通路,可以随着输入电压的数值不同而改变电路的比例系数,如图7.3.16所示。由于反馈通路中有电阻 𝑅𝑓Rf,即使电路中所有二极管均截止,负反馈仍然存在,故集成运放的反相输入端和同相输入端为虚地,𝑢+=𝑢−=0 𝑉u+=u−=0V。当 𝑢𝑖𝑛=0 𝑉uin=0V 时,𝑢𝑜𝑢𝑡=0 𝑉uout=0V;由于 +𝑉𝐶𝐶VCC 和 -𝑉𝐸𝐸VEE 的作用,所有二极管均截止;电阻阻值的选择应保证 𝑢𝑜𝑢𝑡uout < 𝑢𝐷1<𝑢𝐷2<𝑢𝐷3uD1<uD2<uD3。
当 𝑢𝑖𝑛uin 从零逐渐降低且 ∣𝑢𝑖𝑛∣<0.3𝑈0∣uin∣<0.3U0 时,𝑢𝑜𝑢𝑡uout 从零逐渐升高,从而 𝑢𝐷1uD1、𝑢𝐷2uD2、𝑢𝐷3uD3 也随之逐渐升高,但各二极管仍处于截止状态,根据图7.3.15所示曲线,𝑢𝑜𝑢𝑡=−𝑢𝑖𝑛uout=−uin,比例系数的值 𝑘=1k=1。
当 𝑢𝑖𝑛uin 继续降低且 0.3𝑈0≤∣𝑢𝑖𝑛∣<0.56𝑈00.3U0≤∣uin∣<0.56U0 时,𝐷1D1 导通,此时的等效电路如图7.3.17所示。若忽略二极管的正向电阻,则N点的电流方程为:
根据图7.3.15所示曲线,∣𝑢𝑜𝑢𝑡∣≈0.89𝑢𝑖𝑛∣uout∣≈0.89uin。合理选择 𝑅2R2,使:
7.3.5 函数发生器
函数发生器是一种可以同时产生方波、三角波和正弦波的专用集成电路。当调节外部电路参数时,还可以获得占空比可调的矩形波和锯齿波。因此,函数发生器被广泛用于仪器仪表中。
一、电路结构
函数发生器电路的基本原理框图如图7.3.18所示。为有足够强的带负载能力,输出级为缓冲电路,可用电压跟随器。图中各方框表述的是其实现的功能,在实际芯片中,电路结构是多种多样的。另外,为了使振荡频率、振荡幅值、三角波的对称性、直流偏置等均可调,实际电路会更加复杂。
二、函数发生器ICL8038的性能特点及常用接法
ICL8038是性能优良的集成函数发生器,其引脚图如图7.3.19所示。可用单电源供电,即将引脚11接地,引脚6接 +Vcc,Vcc为10~30V;也可用双电源供电,即将引脚11接 -Vee,引脚6接 +Vcc,它们的值为±5~±15V。
1. 性能特点
ICL8038频率的可调范围为0.001 Hz~300 kHz,输出矩形波的占空比可调范围为2%~98%,上升时间为180 ns,下降时间为40 ns;输出三角波(斜坡波)的非线性小于0.05%;输出正弦波的失真度小于1%。
引脚8为频率调节(简称调频)电压输入端,电路的振荡频率与调频电压成正比。引脚7输出调频偏置电压,数值是引脚7与电源 +V 之差,它可作为引脚8的输入电压。
2. 两种基本接法
图7.3.20所示为ICL8038最常见的两种基本接法,矩形波输出端为集电极开路形式,需外接电阻 𝑅𝑜𝑢𝑡Rout 至 +Vcc。在图7.3.20(a)所示电路中,𝑅𝐴RA 和 𝑅𝐵RB 可分别独立调整。在图7.3.20(b)所示电路中,通过改变电位器 𝑅𝑃RP 滑动端的位置来调整 𝑅𝐴RA 和 𝑅𝐵RB 的数值。当 𝑅𝐴=𝑅𝐵RA=RB 时,各输出端的波形如图7.3.21(a)所示,矩形波的占空比为50%,因而为方波。当 𝑅𝐴≠𝑅𝐵RA=RB 时,矩形波不再是方波,引脚2的输出也就不再是正弦波了,图7.3.21(b)所示为矩形波占空比是15%时各输出端的波形图。
(a) 接法之一
(b) 接法之二
(a) 矩形波占空比为50%时的输出波形
(b) 矩形波占空比为15%时的输出波形