9.7 方向导数和梯度

 

第七节 方向导数与梯度

一、方向导数

偏导数反映的是函数沿坐标轴方向的变化率,但许多物理现象告诉我们,只考虑函数沿坐标轴方向的变化率是不够的。例如,热空气要向冷的地方流动,气象学中就需要确定大气温度、气压沿着某些方向的变化率。因此我们有必要讨论函数沿任一指定方向的变化率问题。

设 𝑙l 是 𝑥0𝑦x0​y 平面上以 𝑃0(𝑥0,𝑦0)P0​(x0​,y0​) 为始点的一条射线,𝑒1=(cos⁡𝛼,cos⁡𝛽)e1​=(cosα,cosβ) 是与 𝑙l 同方向的单位向量(见图9-9)。射线 𝑙l 的参数方程为

设函数 𝑧=𝑓(𝑥,𝑦)z=f(x,y) 在点 𝑃0(𝑥0,𝑦0)P0​(x0​,y0​) 的某个邻域 𝑈(𝑃0)U(P0​) 内有定义,𝑃(𝑥0+𝑡cos⁡𝛼,𝑦0+𝑡cos⁡𝛽)P(x0​+tcosα,y0​+tcosβ) 为 𝑙l 上另一点,且 𝑃∈𝑈(𝑃0)P∈U(P0​)。如果函数增量

当 𝑃P 沿着 𝑙l 趋于 𝑃0P0​(即 𝑡→0+t→0+)时的极限存在,那么称此极限为函数 𝑓(𝑥,𝑦)f(x,y) 在点 𝑃0P0​ 沿方向 𝑙l 的方向导数,记作 𝐷𝑒1𝑓(𝑃0)De1​​f(P0​),即

从方向导数的定义可知,方向导数就是函数 𝑓(𝑥,𝑦)f(x,y) 在点 𝑃0(𝑥0,𝑦0)P0​(x0​,y0​) 处沿方向 𝑙l 的变化率。

若函数 𝑓(𝑥,𝑦)f(x,y) 在点 𝑃0(𝑥0,𝑦0)P0​(x0​,y0​) 的偏导数存在,并且方向 𝑒1=𝑖=(1,0)e1​=i=(1,0),则

又若方向 𝑒1=𝑗=(0,1)e1​=j=(0,1),则

但反之,若偏导数存在,则方向导数未必存在。例如,函数 𝑧=𝑥2+𝑦23z=3x2+y2​ 在点 𝑃0(0,0)P0​(0,0) 处沿 𝑙=𝑖l=i 方向的方向导数存在,而偏导数不存在。

定理

如果函数 𝑓(𝑥,𝑦)f(x,y) 在点 𝑃0(𝑥0,𝑦0)P0​(x0​,y0​) 可微分,那么函数在该点沿任一方向 𝑙l 的方向导数存在,且有

其中 cos⁡𝛼cosα 和 cos⁡𝛽cosβ 是方向 𝑙l 的方向余弦。

由假设,函数 𝑓(𝑥,𝑦)f(x,y) 在点 (𝑥0,𝑦0)(x0​,y0​) 可微分,故有

当点 (𝑥0+Δ𝑥,𝑦0+Δ𝑦)(x0​+Δx,y0​+Δy) 在以 (𝑥0,𝑦0)(x0​,y0​) 为始点的射线 𝑙l 上时,应有 Δ𝑥=𝑡cos⁡𝛼Δx=tcosα,Δ𝑦=𝑡cos⁡𝛽Δy=tcosβ,且 (Δ𝑥)2+(Δ𝑦)2=𝑡(Δx)2+(Δy)2​=t。因此,

这就证明了方向导数存在,且其值为

例1

求函数 𝑧=𝑥𝑒2𝑦z=xe2y 在点 𝑃(1,0)P(1,0) 处沿从点 𝑃(1,0)P(1,0) 到点 𝑄(2,−1)Q(2,−1) 的方向的方向导数。

这里方向 𝑙l 即向量 𝑃𝑄=(1,−1)PQ=(1,−1) 的方向,与 𝑙l 同向的单位向量为 𝑒1=(12,−12)e1​=(2​1​,−2​1​)。

因为函数可微分,且

故所求方向导数为

对于三元函数 𝑓(𝑥,𝑦,𝑧)f(x,y,z) 来说,它在空间一点 𝑃0(𝑥0,𝑦0,𝑧0)P0​(x0​,y0​,z0​) 沿方向 𝑒1=(cos⁡𝛼,cos⁡𝛽,cos⁡𝛾)e1​=(cosα,cosβ,cosγ) 的方向导数为

同样可以证明:如果函数 𝑓(𝑥,𝑦,𝑧)f(x,y,z) 在点 (𝑥0,𝑦0,𝑧0)(x0​,y0​,z0​) 可微分,那么函数在该点沿着方向 𝑒1=(cos⁡𝛼,cos⁡𝛽,cos⁡𝛾)e1​=(cosα,cosβ,cosγ) 的方向导数为

例2

求 𝑓(𝑥,𝑦,𝑧)=𝑥𝑦+𝑦2+𝑧𝑥f(x,y,z)=xy+y2+zx 在点 (1,1,2)(1,1,2) 沿方向 𝑙l 的方向导数,其中 𝑙l 的方向角分别为 60∘60∘、45∘45∘、60∘60∘。

与 𝑙l 同向的单位向量

因为函数可微分,且

由公式

 

 

二、梯度

与方向导数相关的一个重要概念是函数的梯度。在二元函数的情形,设函数 𝑓(𝑥,𝑦)f(x,y) 在平面区域 𝐷D 内具有一阶连续偏导数,则对于每一点 𝑃0(𝑥0,𝑦0)∈𝐷P0​(x0​,y0​)∈D,都可以定义一个向量

这个向量称为函数 𝑓(𝑥,𝑦)f(x,y) 在点 𝑃0(𝑥0,𝑦0)P0​(x0​,y0​) 的梯度,记作 grad𝑓(𝑥0,𝑦0)gradf(x0​,y0​) 或 ∇𝑓(𝑥0,𝑦0)∇f(x0​,y0​),即

其中 ∇=∂∂𝑥𝑖+∂∂𝑦𝑗∇=∂x∂​i+∂y∂​j 称为(二维的)向量微分算子或 Nabla 算子。

如果函数 𝑓(𝑥,𝑦)f(x,y) 在点 𝑃0(𝑥0,𝑦0)P0​(x0​,y0​) 可微分,𝑒1=(cos⁡𝛼,cos⁡𝛽)e1​=(cosα,cosβ) 是与方向 𝑙l 同向的单位向量,那么

这一关系式表明了函数在一点的梯度与函数在这点的方向导数之间的关系。特别地,由这个关系可知:

  1. 当 𝜃=0θ=0,即方向 𝑒1e1​ 与梯度 ∇𝑓(𝑥0,𝑦0)∇f(x0​,y0​) 的方向相同时,函数 𝑓(𝑥,𝑦)f(x,y) 增加最快。此时,函数在这个方向的方向导数达到最大值,这个最大值就是梯度 ∇𝑓(𝑥0,𝑦0)∇f(x0​,y0​) 的模,即

    这个结果也表示:函数 𝑓(𝑥,𝑦)f(x,y) 在一点的梯度 ∇𝑓∇f 是这样一个向量,它的方向是函数在这点的方向导数取得最大值的方向,它的模就等于方向导数的最大值。

  2. 当 𝜃=𝜋θ=π,即方向 𝑒1e1​ 与梯度 ∇𝑓(𝑥0,𝑦0)∇f(x0​,y0​) 的方向相反时,函数 𝑓(𝑥,𝑦)f(x,y) 减少最快,函数在这个方向的方向导数达到最小值,即

  3. 当 𝜃=𝜋2θ=2π​,即方向 𝑒1e1​ 与梯度 ∇𝑓(𝑥0,𝑦0)∇f(x0​,y0​) 的方向正交时,函数的变化率为零,即

在几何上,一般来说,二元函数 𝑧=𝑓(𝑥,𝑦)z=f(x,y) 在几何上表示一个曲面,这曲面被平面 𝑧=𝑐z=c(𝑐c 是常数)所截得的曲线 𝐿L 的方程为

这条曲线 𝐿L 在 𝑥𝑦xy 面上的投影是一条平面曲线 𝐿′L′(见图 9-10),它在 𝑥𝑦xy 平面直角坐标系中的方程为 𝑓(𝑥,𝑦)=𝑐.f(x,y)=c.

对于曲线 𝐿′L′ 上的一切点,已知函数的函数值都是 𝑐c,所以我们称平面曲线 𝐿′L′ 为函数 𝑧=𝑓(𝑥,𝑦)z=f(x,y) 的等值线。

若 𝑓𝑥fx​ 和 𝑓𝑦fy​ 不同时为零,则等值线 𝑓(𝑥,𝑦)=𝑐f(x,y)=c 上任一点 𝑃0(𝑥0,𝑦0)P0​(x0​,y0​) 处的一个单位法向量为

这表明函数 𝑓(𝑥,𝑦)f(x,y) 在一点 (𝑥0,𝑦0)(x0​,y0​) 的梯度 ∇𝑓(𝑥0,𝑦0)∇f(x0​,y0​) 的方向就是等值线 𝑓(𝑥,𝑦)=𝑐f(x,y)=c 在这点的法线方向,而梯度的模 ∣∇𝑓(𝑥0,𝑦0)∣∣∇f(x0​,y0​)∣ 就是沿这个法线方向的方向导数。

例3

求函数 在点 𝑃(1,0)P(1,0) 处沿从点 𝑃(1,0)P(1,0) 到点 𝑄(2,−1)Q(2,−1) 的方向的方向导数。

这里方向 𝑙l 即向量 𝑃𝑄=(1,−1)PQ=(1,−1) 的方向,与 𝑙l 同向的单位向量为

因为函数可微分,且

故所求方向导数为

例4

设 𝑓(𝑥,𝑦)=𝑥2+𝑦2f(x,y)=x2+y2,求:

  1. 函数 𝑓(𝑥,𝑦)f(x,y) 在点 𝑃0(1,1)P0​(1,1) 处增加最快的方向以及沿这个方向的方向导数;
  2. 函数 𝑓(𝑥,𝑦)f(x,y) 在点 𝑃0(1,1)P0​(1,1) 处减少最快的方向以及沿这个方向的方向导数;
  3. 函数 𝑓(𝑥,𝑦)f(x,y) 在点 𝑃0(1,1)P0​(1,1) 处变化率为零的方向。

  1. 函数 𝑓(𝑥,𝑦)f(x,y) 在点 𝑃0P0​ 处沿 ∇𝑓(1,1)∇f(1,1) 的方向增加最快,梯度

    所以所求方向可取为单位向量

    方向导数为

  2. 函数 𝑓(𝑥,𝑦)f(x,y) 在点 𝑃0P0​ 处沿 −∇𝑓(1,1)−∇f(1,1) 的方向减少最快,这方向可取为

    方向导数为

  3. 函数 𝑓(𝑥,𝑦)f(x,y) 在点 𝑃0P0​ 处沿垂直于 ∇𝑓(1,1)∇f(1,1) 的方向变化率为零,这方向是

例5

求 𝑓(𝑥,𝑦,𝑧)f(x,y,z) 在点 𝑃0(1,1,0)P0​(1,1,0) 处沿什么方向变化最快,在这个方向的变化率是多少?

函数 𝑓(𝑥,𝑦,𝑧)f(x,y,z) 在点 𝑃0P0​ 处沿 ∇𝑓(1,1,0)∇f(1,1,0) 的方向增加最快,沿 −∇𝑓(1,1,0)−∇f(1,1,0) 的方向减少最快,在这两个方向的变化率分别是

例6

求曲面 在点 𝑃0(1,2,4)P0​(1,2,4) 的切平面和法线方程。

设 𝑓(𝑥,𝑦,𝑧)=𝑥2+𝑦2+𝑧f(x,y,z)=x2+y2+z。由梯度与等值面的关系可知,梯度 ∇𝑓∣𝑃0=

梯度的方向是等值面 𝑓(𝑥,𝑦,𝑧)=9f(x,y,z)=9 在点 𝑃0P0​ 的法线方向,因此切平面方程是 2(𝑥−1)+4(𝑦−2)+(𝑧−4)=0,2(x−1)+4(y−2)+(z−4)=0,

即 2𝑥+4𝑦+𝑧=14.2x+4y+z=14.

曲面在 𝑃0P0​ 处的法线方程是 𝑥=1+2𝑡,𝑦=2+4𝑡,𝑧=4+𝑡(𝑡为任意常数).x=1+2t,y=2+4t,z=4+t(t为任意常数).

例7

试求数量场所产生的梯度场,其中常数 𝑚>0m>0,𝑟=𝑥2+𝑦2+𝑧2r=x2+y2+z2​ 为原点 𝑂O 与点 𝑀(𝑥,𝑦,𝑧)M(x,y,z) 间的距离。

设 𝑓(𝑥,𝑦,𝑧)=−𝑚𝑟f(x,y,z)=−rm​,则

计算各偏导数:

同理,

所以,

从而,

如果用 𝑒𝑟er​ 表示与 𝑂𝑀OM 同方向的单位向量,那么

因此,

上式右端在力学上可解释为,位于原点 𝑂O 而质量为 𝑚m 的质点对位于点 𝑀M 而质量为 1 的质点的引力。这引力的大小与两质点的质量的乘积成正比,而与它们的距离平方成反比,这引力的方向由点 𝑀M 指向原点。因此数量场的势场即梯度场 ∇𝑓∇f 称为引力场,而函数 𝑓f 称为引力势。

数量场与向量场

我们简单地介绍数量场与向量场的概念。如果对于空间区域 𝐺G 内的任一点 𝑀M,都有一个确定的数量 𝑓(𝑀)f(M),那么称在这空间区域 𝐺G 内确定了一个数量场(例如温度场、密度场等)。一个数量场可用一个数量函数 𝑓(𝑀)f(M) 来确定。

如果与点 𝑀M 相对应的是一个向量 𝐹(𝑀)F(M),那么称在这空间区域 𝐺G 内确定了一个向量场(例如力场、速度场等)。一个向量场可用一个向量值函数 𝐹(𝑀)F(M) 来确定,而

其中 𝑃(𝑀),𝑄(𝑀),𝑅(𝑀)P(M),Q(M),R(M) 是点 𝑀M 的数量函数。

若向量场 𝐹(𝑀)F(M) 是某个数量函数 𝑓(𝑀)f(M) 的梯度,则称 𝑓(𝑀)f(M) 是向量场 𝐹(𝑀)F(M) 的一个势函数,并称向量场 𝐹(𝑀)F(M) 为势场。由此可知,由数量函数 𝑓(𝑀)f(M) 产生的梯度场 ∇𝑓(𝑀)∇f(M) 是一个势场。但需注意,任意一个向量场并不一定都是势场,因为它不一定是某个数量函数的梯度。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  • 28
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
以下是 CentOS 9.7 升级 OpenSSH 和 OpenSSL 的详细步骤: 1. 检查当前系统版本 使用以下命令检查当前系统是否已经安装了 OpenSSH 和 OpenSSL: ``` rpm -qa | grep -E 'openssh|openssl' ``` 如果系统中已经安装了这两个软件包,则需要先卸载旧版本的 OpenSSH 和 OpenSSL。 2. 卸载旧版本的 OpenSSH 和 OpenSSL 使用以下命令卸载旧版本的 OpenSSH 和 OpenSSL: ``` yum remove -y openssh openssl ``` 3. 下载最新版本的 OpenSSH 和 OpenSSL 从 OpenSSH 和 OpenSSL 官方网站下载最新版本的软件包,可以使用以下命令下载: ``` wget https://www.openssl.org/source/openssl-1.1.1k.tar.gz wget https://openbsd.hk/pub/OpenBSD/OpenSSH/portable/openssh-8.6p1.tar.gz ``` 4. 安装 OpenSSL a. 解压 OpenSSL 软件包: ``` tar -zxvf openssl-1.1.1k.tar.gz ``` b. 进入解压后的目录,执行以下命令进行编译: ``` cd openssl-1.1.1k ./config shared zlib make && make install ``` c. 编译完成后,需要将新版本的 OpenSSL 库文件路径添加到系统的 ldconfig 配置文件中: ``` echo "/usr/local/lib" >> /etc/ld.so.conf.d/local.conf ldconfig -v ``` 5. 安装 OpenSSH a. 解压 OpenSSH 软件包: ``` tar -zxvf openssh-8.6p1.tar.gz ``` b. 进入解压后的目录,执行以下命令进行编译: ``` cd openssh-8.6p1 ./configure --prefix=/usr --sysconfdir=/etc/ssh --with-ssl-dir=/usr/local/ssl --with-zlib --with-md5-passwords --with-pam make && make install ``` c. 编译完成后,需要将新版本的 OpenSSH 相关文件路径添加到系统的 PATH 环境变量中: ``` echo "export PATH=/usr/bin:/usr/sbin:/usr/local/bin:/usr/local/sbin" >> /etc/profile source /etc/profile ``` 6. 验证 OpenSSH 和 OpenSSL 的版本 执行以下命令验证 OpenSSH 和 OpenSSL 的版本: ``` ssh -V openssl version ``` 如果输出的版本号是最新的,则说明升级成功。 注意:升级 OpenSSH 和 OpenSSL 可能会影响系统的安全性和稳定性,请谨慎操作,并备份系统数据。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏驰和徐策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值