10.2 二重积分计算法
一、利用直角坐标计算二重积分
在讨论二重积分的计算问题时,我们假定 f(x,y)≥0f(x, y) \ge 0f(x,y)≥0。设积分区域 DDD 可以用不等式来表示:
如图 10-4 所示,其中函数 φ1(x)\varphi_1(x)φ1(x) 和 φ2(x)\varphi_2(x)φ2(x) 在区间 [a,b][a, b][a,b] 上连续。
图 10-4
按照二重积分的几何意义,二重积分的值等于以 DDD 为底,以曲面 z=f(x,y)z = f(x, y)z=f(x,y) 为顶的曲顶柱体的体积。我们可以应用第六章中计算“平行截面面积为已知的立体的体积”的方法来计算这个曲顶柱体的体积。
计算截面面积
图 10-5
一般地,过区间 [a,b][a, b][a,b] 上任一点 xxx 且平行于 y0zy0zy0z 面的平面截曲顶柱体所得截面的面积为:
于是,应用计算平行截面面积为已知的立体体积的方法,得曲顶柱体体积为:
这个体积也就是所求二重积分的值,从而有等式:
上式右端的积分叫做先对 yyy,后对 xxx 的二次积分。就是说,先把 xxx 看做常数,把 f(x,y)f(x, y)f(x,y) 只看做 yyy 的函数,并对 yyy 计算从 φ1(x)\varphi_1(x)φ1(x) 到 φ2(x)\varphi_2(x)φ2(x) 的定积分;然后把算得的结果(是 xxx 的函数)再对 xxx 计算在区间 [a,b][a, b][a,b] 上的定积分。这个先对 yyy,后对 xxx 的二次积分也常记作:
因此,等式也可以写成:
这就是把二重积分化为先对 yyy,后对 xxx 的二次积分的公式。在上述讨论中,我们假定 f(x,y)≥0f(x, y) \ge 0f(x,y)≥0,但实际上公式的成立并不受此条件限制。
类似地,如果积分区域 DDD 可以用不等式表示:
如图 10-6 所示,其中函数 ψ1(y)\psi_1(y)ψ1(y) 和 ψ2(y)\psi_2(y)ψ2(y) 在区间 [c,d][c, d][c,d] 上连续,那么就有:
图 10-6
上式右端的积分叫做先对 xxx,后对 yyy 的二次积分,这个积分也常记作:
因此,等式也可以写成:
这就是把二重积分化为先对 xxx,后对 yyy 的二次积分的公式。
以后我们称图 10-4 所示的积分区域为 X 型区域,图 10-6 所示的积分区域为 Y 型区域。应用公式时,积分区域必须是 X 型区域。 X 型区域 DDD 的特点是:穿过 DDD 内部且平行于 yyy 轴的直线与 DDD 的边界相交不多于两点;而用公式时,积分区域必须是 Y 型区域。 Y 型区域 DDD 的特点是:穿过 DDD 内部且平行于 xxx 轴的直线与 DDD 的边界相交不多于两点。
如果积分区域 DDD 如图 10-7 那样,既有一部分使穿过 DDD 内部且平行于 yyy 轴的直线与 DDD 的边界相交多于两点,又有一部分使穿过 DDD 内部且平行于 xxx 轴的直线与 DDD 的边界相交多于两点,那么 DDD 既不是 X 型区域,又不是 Y 型区域。对于这种情形,可以把 DDD 分成几部分,使每个部分是 X 型区域或是 Y 型区域。例如,在图 10-7 中,把 DDD 分成三部分,它们都是 X 型区域,从而在这三部分上的二重积分都可应用公式。各部分上的二重积分求得后,根据二重积分的性质,它们的和就是在 DDD 上的二重积分。
图 10-7 和 图 10-8
将二重积分化为二次积分时,确定积分限是一个关键。积分限是根据积分区域 DDD 来确定的,先画出积分区域 DDD 的图形。假如积分区域 DDD 是 X 型的,如图 10-8 所示,在区间 [a,b][a, b][a,b] 上任意取定一个 xxx 值,积分区域上以这个 xxx 值为横坐标的点在一段直线上,这段直线平行于 yyy 轴,该线段上点的纵坐标从 φ1(x)\varphi_1(x)φ1(x) 变到 φ2(x)\varphi_2(x)φ2(x),这就是公式中先把 xxx 看做常量而对 yyy 积分时的下限和上限。因为上面的 xxx 值是在 [a,b][a, b][a,b] 上任意取定的,所以再把 xxx 看做变量而对 xxx 积分时,积分区间就是 [a,b][a, b][a,b]。
总结
通过将二重积分化为两次单积分,我们可以更方便地计算复杂区域和函数的积分值。上述方法展示了如何利用直角坐标来处理二重积分问题,并且说明了不同类型区域的处理方法。
例题讲解
图 10-10 和 图 10-11 分别显示了用两种方法计算该积分。
解法一
先画出积分区域 DDD(如图 10-10 所示)。DDD 是 XXX 型的,DDD 上的点的横坐标的变动范围是区间 [1,2][1, 2][1,2]。在区间 [1,2][1, 2][1,2] 上任意取定一个 xxx 值,则 DDD 上以这个 xxx 值为横坐标的点在一段直线上,这段直线平行于 yyy 轴,该线段上点的纵坐标从 y=1y = 1y=1 变到 y=xy = xy=x。利用公式 (2-1) 得:
解法二
如图 10-11 所示,积分区域 DDD 是 YYY 型的,DDD 上的点的纵坐标的变动范围是区间 [1,2][1, 2][1,2]。在区间 [1,2][1, 2][1,2] 上任意取定一个 yyy 值,则 DDD 上以这个 yyy 值为纵坐标的点在一段直线上,这段直线平行于 xxx 轴,该线段上点的横坐标从 x=yx = yx=y 变到 x=2x = 2x=2。于是,利用公式 (2-2) 得:
例 2 计算 ∬Dy1+x2−y2 dσ\iint_D y \sqrt{1 + x^2 - y^2} \, d\sigma∬Dy1+x2−y2dσ,其中 DDD 是由直线 y=xy = xy=x, x=−1x = -1x=−1 和 y=1y = 1y=1 所围成的闭区域。
如图 10-12 所示,积分区域 DDD 既是 XXX 型的,又是 YYY 型的。
若利用公式 (2-1),得:
若利用公式 (2-2)(图 10-13),就有:
其中关于 xxx 的积分计算比较麻烦。所以这里用公式 (2-1) 计算较为方便。
例 3 计算 ∬Dxy dσ\iint_D xy \, d\sigma∬Dxydσ,其中 DDD 是由抛物线 y2=xy^2 = xy2=x 及直线 y=x−2y = x - 2y=x−2 所围成的闭区域。
画出积分区域 DDD 如图 10-14 所示。DDD 既是 XXX 型的,又是 YYY 型的。若利用公式 (2-2),则得:
若利用公式 (2-1) 来计算,由于在区间 [0,1][0, 1][0,1] 及 [1,4][1, 4][1,4] 上表示 φ1(x)\varphi_1(x)φ1(x) 的式子不同,所以要用经过交点 (1,−1)(1, -1)(1,−1) 且平行于 yyy 轴的直线 x=1x = 1x=1 把区域 DDD 分成 D1D_1D1 和 D2D_2D2 两部分(图 10-15),其中:
因此,根据二重积分的性质 2,就有:
由此可见,这里用公式 (2-1) 来计算需要化为两个二次积分。上述几个例子说明,在化二重积分为二次积分时,为了计算简便,需要选择恰当的二次积分的次序。这时,既要考虑积分区域 DDD 的形状,又要考虑被积函数 f(x,y)f(x, y)f(x,y) 的特性。
例 4 求两个底圆半径都等于 RRR 的直交圆柱面所围成的立体的体积。
解:设这两个圆柱面的方程分别为 x2+y2=R2x^2 + y^2 = R^2x2+y2=R2 及 x2+z2=R2x^2 + z^2 = R^2x2+z2=R2。利用立体关于坐标平面的对称性,只要算出它在第一象限部分(图 10-16(a))的体积 V1V_1V1,然后再乘 8 就行了。所求立体在第一象限部分可以看成是一个曲顶柱体,它的底为:
如图 10-16(b) 所示,它的顶是柱面于是:
利用公式 (2-1),得:
从而所求立体的体积为:
总结
通过上述例题的讲解,我们可以看到,化二重积分为二次积分的方法在实际应用中是非常有效的。选择合适的积分次序以及将积分区域进行合理的划分,可以大大简化计算过程,准确地求出二重积分的值。
二、利用极坐标计算二重积分
在某些情况下,积分区域 DDD 的边界曲线用极坐标方程来表示比较方便,同时被积函数用极坐标变量 rrr 和 θ\thetaθ 表达也比较简单。这时,可以考虑利用极坐标来计算二重积分。
二重积分的定义
按二重积分的定义:
假定从极点 OOO 出发且穿过闭区域 DDD 内部的射线与 DDD 的边界曲线相交不多于两点。可以用以极点为中心的一族同心圆:r=常数r = \text{常数}r=常数 以及从极点出发的一族射线:θ=常数\theta = \text{常数}θ=常数,将 DDD 分成若干个小闭区域。除了包含边界点的一些小区域外,小闭区域的面积 Δσi\Delta \sigma_iΔσi 可计算如下:
在这些小闭区域内取圆周 r=rir = r_ir=ri 上的一点 (ri,θi)(r_i, \theta_i)(ri,θi),该点的直角坐标为 (ricosθi,risinθi)(r_i \cos \theta_i, r_i \sin \theta_i)(ricosθi,risinθi),则有:
于是:
例题讲解
例 5 计算 ∬De−x2−y2 dA\iint_D e^{-x^2 - y^2} \, dA∬De−x2−y2dA,其中 DDD 是由圆心在原点、半径为 aaa 的圆周所围成的闭区域。
在极坐标系中,闭区域 DDD 可表示为:
由公式:
计算如下:
于是:
例 6 求球体 x2+y2+z2≤4a2x^2 + y^2 + z^2 \le 4a^2x2+y2+z2≤4a2 被圆柱面 x2+y2=2axx^2 + y^2 = 2axx2+y2=2ax 所截得的(含在圆柱面内的部分)立体的体积。
如图 10-23 所示:
在极坐标系中,闭区域 DDD 可用不等式表示:
于是体积 VVV 为:
计算如下:
通过变换 r=2acosθsinϕr = 2a \cos \theta \sin \phir=2acosθsinϕ,有 dr=2acosθcosϕ dϕdr = 2a \cos \theta \cos \phi \, d\phidr=2acosθcosϕdϕ,积分简化为:
最后化简得到:
这些例题展示了如何利用极坐标变换简化积分计算过程,并得到准确的结果。
三、二重积分的换元法
二重积分的换元法是一种重要的积分技巧,通过适当的变量变换,可以将复杂的积分区域和被积函数转换为更易处理的形式。下面将通过一些例题展示如何应用换元法计算二重积分。
解:
-
确定变量变换:
-
计算雅可比式:变换的雅可比式为:
-
变换后的积分区域:在 u,vu, vu,v 平面上,积分区域 D′D'D′ 的边界由 u=0u = 0u=0、v=2v = 2v=2、u=vu = vu=v 及 u=−vu = -vu=−v 围成。
-
应用换元公式:
- 计算积分:
总结
通过换元法,我们可以将复杂的积分区域和被积函数转换为更易处理的形式,利用雅可比式进行变量变换,从而简化计算过程。这一技巧在解决二重积分问题中非常实用。
解:
-
确定变量变换:令 u=x+yu = x + yu=x+y,v=yxv = \frac{y}{x}v=xy,则有 x=u1+vx = \frac{u}{1 + v}x=1+vu, y=uv1+vy = \frac{uv}{1 + v}y=1+vuv。
-
计算雅可比式:变换的雅可比式为:
-
变换后的积分区域:在 u,vu, vu,v 平面上,积分区域 D′D'D′ 的边界由 u=cu = cu=c、u=du = du=d、v=av = av=a、v=bv = bv=b 围成。
-
应用换元公式:
- 计算积分:
计算 uuu 的积分:
接着计算 vvv 的积分:
最终结果为:
总结
通过换元法,我们可以将复杂的积分区域和被积函数转换为更易处理的形式,利用雅可比式进行变量变换,从而简化计算过程。这一技巧在解决二重积分问题中非常实用。
图解
图 10-26(a) 和 图 10-26(b) 分别表示了积分区域 DDD 和 D′D'D′ 的边界:
图 10-26(a):在 xOyxOyxOy 平面上的积分区域 DDD,由直线 x+y=cx + y = cx+y=c、x+y=dx + y = dx+y=d、y=axy = axy=ax 和 y=bxy = bxy=bx 围成。
图 10-26(b):在 uOvuOvuOv 平面上的积分区域 D′D'D′,由直线 u=cu = cu=c、u=du = du=d、v=av = av=a 和 v=bv = bv=b 围成。
解:
-
确定变量变换:令 x=arcosθx = a r \cos \thetax=arcosθ,y=brsinθy = b r \sin \thetay=brsinθ,则有 0≤r≤10 \le r \le 10≤r≤1,0≤θ≤2π0 \le \theta \le 2\pi0≤θ≤2π。
-
计算雅可比式:变换的雅可比式为:
-
变换后的积分区域:在极坐标系中,积分区域 D′D'D′ 的边界由 0≤r≤10 \le r \le 10≤r≤1,0≤θ≤2π0 \le \theta \le 2\pi0≤θ≤2π 围成。
-
应用换元公式:
- 计算积分:
计算 rrr 的积分:
设 u=1−r2u = 1 - r^2u=1−r2,则 du=−2r drdu = -2r \, drdu=−2rdr,当 r=0r = 0r=0 时,u=1u = 1u=1,当 r=1r = 1r=1 时,u=0u = 0u=0。积分变为:
接着计算 θ\thetaθ 的积分:
最终结果为:
总结
通过换元法,我们可以将复杂的积分区域和被积函数转换为更易处理的形式,利用雅可比式进行变量变换,从而简化计算过程。这一技巧在解决二重积分问题中非常实用。
图解
图 10-26(a) 和 图 10-26(b) 分别表示了积分区域 DDD 和 D′D'D′ 的边界:
图 10-26(a):在 xOyxOyxOy 平面上的积分区域 DDD,由椭圆 x2a2+y2b2≤1\frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1a2x2+b2y2≤1 围成。
图 10-26(b):在 rθr\thetarθ 平面上的积分区域 D′D'D′,由 0≤r≤10 \le r \le 10≤r≤1,0≤θ≤2π0 \le \theta \le 2\pi0≤θ≤2π 围成。