高等数学(第六章:二重积分)

一、二重积分的对称性与比大小

1. 二重积分的概念

2. 二重积分的性质


3. 二重积分的对称性

1)奇偶对称

若 D 关于 x = a 对称,则 ∬D (x-a) dxdy = 0 ;若 D 关于 y = b 对称,则 ∬D (y-b) dxdy = 0 。

【例题】:设 D:x2 + y2 ≤ 2·x ,则 I = ∬D (2·x+3·y) dxdy = ?

【解析】:D 为 (x-1)2 + y2 ≤ 1 ,可知 D 关于 x = 1 和 y = 0 对称,即 ∬D (x-1) dxdy = ∬D y dxdy = 0 ,有:I = ∬D (2·x+3·y) dxdy = ∬D 2·(x-1) dxdy + ∬D 3·y dxdy + ∬D 2 dxdy = ∬D 2 dxdy = 2·π 。

学会分割区域 D 很重要!

例如:

  • 设 D 是 xOy 平面上以 A(1,1) , B(-1,1) , C(-1,-1) 为顶点的三角形区域,D1 是 D 在第一象限的部分,则 I = ∬D [x·y + cos(x)·sin(y)] dxdy = 2·∬D1 [cos(x)·sin(y)] dxdy 。(用 y = -x 分割区域 D)

  • 设平面 D = {(x,y) | x3 ≤ y ≤ 1 , -1 ≤ x ≤ 1} ,f(x) 是定义在 [-a,a](a ≥ 1)上的任意连续函数,则 ∬D [(x+1)·f(x) + (x-1)·f(-x)]·sin(y) dxdy = 0 。(用 y = -x3 , y ≥ 0 分割区域 D)

2)轮换对称

【总结】:

① 将区域 D 中的 x,y 与 f(x,y) 中的 x,y 同时对调,值不变。
即:∬D(x,y) f(x,y) dσ = ∬D(y,x) f(y,x) dσ 天然成立

② 若区域 D 关于 y = x 对称,将被积函数的 x 与 y 对调,值不变。
即:∬D f(x,y) dσ = ∬D f(y,x) dσ

  • 进一步的,I = ∬D f(x,y) dσ = ∬D f(y,x) dσ = (1/2)·∬D [f(x,y) + f(y,x)] dσ 。

  • 更进一步的,
    若 f(x,y) = f(y,x) ,则 ∬D f(x,y) dσ = 2·∬D1 f(x,y) dσ
    若 f(x,y) = -f(y,x) ,则 ∬D f(x,y) dσ = 0 。

4. 二重积分比大小

积分区域控制了被积函数的大小。

① 积分区域相同,比较被积函数的大小;

② 积分区域不同,比较被积函数的大小(不同积分区域的 x,y 取值不同)。

【方法】:

  • 比 1 大,越平方越大,越根号越小;

  • 比 1 小,比 0 大,越平方越小,越根号越大。

【例题】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Kusunoki_D

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值