一、二重积分的对称性与比大小
1. 二重积分的概念
2. 二重积分的性质
3. 二重积分的对称性
1)奇偶对称
若 D 关于 x = a 对称,则 ∬D (x-a) dxdy = 0 ;若 D 关于 y = b 对称,则 ∬D (y-b) dxdy = 0 。
【例题】:设 D:x2 + y2 ≤ 2·x ,则 I = ∬D (2·x+3·y) dxdy = ?
【解析】:D 为 (x-1)2 + y2 ≤ 1 ,可知 D 关于 x = 1 和 y = 0 对称,即 ∬D (x-1) dxdy = ∬D y dxdy = 0 ,有:I = ∬D (2·x+3·y) dxdy = ∬D 2·(x-1) dxdy + ∬D 3·y dxdy + ∬D 2 dxdy = ∬D 2 dxdy = 2·π 。
学会分割区域 D 很重要!
例如:
-
设 D 是 xOy 平面上以 A(1,1) , B(-1,1) , C(-1,-1) 为顶点的三角形区域,D1 是 D 在第一象限的部分,则 I = ∬D [x·y + cos(x)·sin(y)] dxdy = 2·∬D1 [cos(x)·sin(y)] dxdy 。(用 y = -x 分割区域 D)
-
设平面 D = {(x,y) | x3 ≤ y ≤ 1 , -1 ≤ x ≤ 1} ,f(x) 是定义在 [-a,a](a ≥ 1)上的任意连续函数,则 ∬D [(x+1)·f(x) + (x-1)·f(-x)]·sin(y) dxdy = 0 。(用 y = -x3 , y ≥ 0 分割区域 D)
2)轮换对称
【总结】:
① 将区域 D 中的 x,y 与 f(x,y) 中的 x,y 同时对调,值不变。
即:∬D(x,y) f(x,y) dσ = ∬D(y,x) f(y,x) dσ 天然成立
② 若区域 D 关于 y = x 对称,将被积函数的 x 与 y 对调,值不变。
即:∬D f(x,y) dσ = ∬D f(y,x) dσ
-
进一步的,I = ∬D f(x,y) dσ = ∬D f(y,x) dσ = (1/2)·∬D [f(x,y) + f(y,x)] dσ 。
-
更进一步的,
若 f(x,y) = f(y,x) ,则 ∬D f(x,y) dσ = 2·∬D1 f(x,y) dσ
若 f(x,y) = -f(y,x) ,则 ∬D f(x,y) dσ = 0 。
4. 二重积分比大小
积分区域控制了被积函数的大小。
① 积分区域相同,比较被积函数的大小;
② 积分区域不同,比较被积函数的大小(不同积分区域的 x,y 取值不同)。
【方法】:
-
比 1 大,越平方越大,越根号越小;
-
比 1 小,比 0 大,越平方越小,越根号越大。
【例题】