11.3 格林公式及其应用
一、格林公式
在一元函数积分学中,牛顿-莱布尼茨公式表示:f′(x)f'(x)f′(x) 在区间 [a,b][a,b][a,b] 上的积分可以通过它的原函数 F(x)F(x)F(x) 在这个区间端点上的值来表达。
下面要介绍的格林 (Green) 公式告诉我们,在平面闭区域 DDD 上的二重积分可以通过沿闭区域 DDD 的边界曲线 LLL 上的曲线积分来表达。
平面单连通区域的概念
对平面区域 DDD 的边界曲线 LLL,我们规定 LLL 的正向如下:当观察者沿 LLL 的这个方向行走时,DDD 内在他近处的那一部分总在他的左边。例如,DDD 是边界曲线 LLL 及 lll 所围成的复连通区域(图 11-8),作为 DDD 的正向边界,LLL 的正向是逆时针方向,而 lll 的正向是顺时针方向。
格林公式
定理 1: 设闭区域 DDD 由分段光滑的曲线 LLL 围成,若函数 P(x,y)P(x,y)P(x,y) 及 Q(x,y)Q(x,y)Q(x,y) 在 DDD 上具有一阶连续偏导数,则有 其中 LLL 是 DDD 的取正向的边界曲线。公式 (3-1) 叫做格林公式。
证明: 先假设穿过区域 DDD 内部且平行坐标轴的直线与 DDD 的边界曲线 LLL 的交点恰好为两点,即区域 DDD 既是 XXX 型又是 YYY 型的情形。图 11-9、图 11-10 所示的区域都属于这种情形。例如,图 11-9 所示的区域 DDD 显然是 XXX 型的,事实上 DDD 又是 YYY 型的。若设有向曲线弧 FGAEFGAEFGAE 为 L1:x=ψ1(y)L_1: x = \psi_1(y)L1:x=ψ1(y),EBCFEBCFEBCF 为 L2:x=ψ2(y)L_2: x = \psi_2(y)L2:x=ψ2(y),则 DDD 可表达成 即 DDD 又是 YYY 型的。
设 DDD 如图 11-9 所示,于是 因为
连续,所以由二重积分的计算法有
另一方面,由对坐标的曲线积分的性质及计算法有
因此,
又由于
故有
由于对区域 DDD,公式 (3-2) 与 (3-3) 同时成立,合并后即得公式 (3-1)。对于如图 11-10 所示的区域 DDD,完全类似地可证 (3-1) 成立。
再考虑一般情形。如果闭区域 DDD 不满足以上条件,那么可以在 DDD 内引进一条或几条辅助曲线把 DDD 分成有限个部分闭区域,使得每个部分闭区域都满足上述条件。例如,就图 11-11 所示的闭区域 DDD 来说,它的边界曲线 LLL 为 MNPMMNPMMNPM,引进一条辅助线 ABCABCABC,把 DDD 分成 D1D_1D1、D2D_2D2、D3D_3D3 三部分。应用公式 (3-1) 于每个部分,得
把这三个等式相加,注意到相加时沿辅助曲线来回的曲线积分相互抵消,便得 其中 LLL 的方向对 DDD 来说为正方向。一般地,公式 (3-1) 对于由分段光滑曲线围成的闭区域都成立。证毕。
注意,对于复连通区域 DDD,格林公式 (3-1) 右端应包括沿区域 DDD 的全部边界的曲线积分,且边界的方向对区域 DDD 来说都是正向。
格林公式的应用
例题
解:令 P=x2yP = x^2 yP=x2y,Q=−xy2Q = -xy^2Q=−xy2,则
由于 LLL 是正向圆周,区域 DDD 为圆 x2+y2≤a2x^2 + y^2 \leq a^2x2+y2≤a2,应用格林公式,
因此,结果为
例 1 计算 ∮Ly dx−x2 dy\oint_L y \, dx - x^2 \, dy∮Lydx−x2dy,其中 LLL 为正向圆周 x2+y2=a2x^2 + y^2 = a^2x2+y2=a2。
应用格林公式
例 2 计算 ∬Dxey dx dy\iint_D x e^y \, dx \, dy∬Dxeydxdy,其中 DDD 是以 O(0,0)O(0,0)O(0,0)、A(1,1)A(1,1)A(1,1)、B(0,1)B(0,1)B(0,1) 为顶点的三角形闭区域(图 11-12)。
因此,由公式(3-1)有
在三角形闭区域内,积分路径分为 OAOAOA、ABABAB、BOBOBO 三段。
-
在 OAOAOA 上,y=xy = xy=x,积分为
-
在 ABABAB 上,x=1x = 1x=1,积分为
-
在 BOBOBO 上,x=0x = 0x=0,积分为 0。
所以
所以
解:根据公式(3-4)有
所以椭圆所围成的面积为 A=πabA = \pi abA=πab。
所以
记 LLL 所围成的闭区域为 DDD。当 (0,0)∉D(0,0) \notin D(0,0)∈/D 时,由公式 (3-1) 有
当 (0,0)∈D(0,0) \in D(0,0)∈D 时,选取适当小的 r>0r > 0r>0,作位于 DDD 内的圆周 l:x2+y2=r2l: x^2 + y^2 = r^2l:x2+y2=r2。记 LLL 和 lll 所围成的闭区域为 D1D_1D1(图 11-13)。对于复连通区域 D1D_1D1,应用格林公式,得
其中 lll 的方向取逆时针方向。于是
计算 lll 上的积分,使用极坐标转换,令
所以
二、平面上曲线积分与路径无关的条件
在物理和力学中,我们经常研究势场,这涉及到场力所作的功是否与路径无关。数学上,这个问题可以表述为曲线积分与路径无关的条件。为了研究这个问题,我们需要明确什么叫做曲线积分
设 GGG 是一个区域,P(x,y)P(x, y)P(x,y) 和 Q(x,y)Q(x, y)Q(x,y) 在区域 GGG 内具有一阶连续偏导数。如果对于 GGG 内任意指定的两个点 AAA、BBB 以及 GGG 内从点 AAA 到点 BBB 的任意两条曲线 L1L_1L1 和 L2L_2L2(图 11-14),等式
在以上叙述中注意到,如果曲线积分与路径无关,那么所以
从而
这里 L1+L2L_1 + L_2L1+L2 是一条有向闭曲线。因此,在区域 GGG 内,由曲线积分与路径无关可以推得在 GGG 内沿闭曲线的曲线积分为零。反过来,如果在区域 GGG 内沿任意闭曲线的曲线积分为零,也可以推得在 GGG 内曲线积分与路径无关。由此得出结论:曲线积分 ∫P dx+Q dy\int P \, dx + Q \, dy∫Pdx+Qdy 在 GGG 内与路径无关相当于沿 GGG 内任意闭曲线 CCC 的曲线积分
定理 2
设区域 GGG 是一个单连通域,若函数 P(x,y)P(x, y)P(x,y) 与 Q(x,y)Q(x, y)Q(x,y) 在 GGG 内具有一阶连续偏导数,则曲线积分 ∫P dx+Q dy\int P \, dx + Q \, dy∫Pdx+Qdy 在 GGG 内与路径无关(或沿 GGG 内任意闭曲线的曲线积分为零)的充分必要条件是 在 GGG 内恒成立。
证明
充分性
因为 GGG 是单连通的,所以闭曲线 CCC 所围成的闭区域 DDD 全部在 GGG 内,于是条件 ∂Q∂x−∂P∂y=0\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 0∂x∂Q−∂y∂P=0 在 DDD 上恒成立。应用格林公式,有 上式左端的二重积分等于零(因为被积函数在 DDD 上恒为零),从而右端的曲线积分也等于零。
必要性
用反证法。假设上述论断不成立,那么 GGG 内至少有一点 M0M_0M0,使得
不妨假定
由于 ∂Q∂x−∂P∂y\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}∂x∂Q−∂y∂P 在 GGG 内连续,可以在 GGG 内取得一个以 M0M_0M0 为圆心、半径足够小的圆形闭区域 KKK,使得在 KKK 上恒有
于是由格林公式及二重积分的性质就有 这里 KKK 是 KKK 的正向边界曲线,σ\sigmaσ 是 KKK 的面积。因为 η>0\eta > 0η>0,σ>0\sigma > 0σ>0,从而
这结果与沿 GGG 内任意闭曲线的曲线积分为零的假定相矛盾,可见 GGG 内使 ∂Q∂x−∂P∂y=0\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 0∂x∂Q−∂y∂P=0 的点不可能存在,即 ∂Q∂x−∂P∂y=0\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 0∂x∂Q−∂y∂P=0 在 GGG 内处处成立。证毕。
在第二节第二目例 3 中我们看到,起点与终点相同的三个曲线积分 ∫2xy dx+x2 dy\int 2xy \, dx + x^2 \, dy∫2xydx+x2dy 相等。由定理 2 来看,这不是偶然的,因为这里 恒成立,而整个 xOyxOyxOy 面是单连通域,因此曲线积分在 xOyxOyxOy 面内与路径无关。
在定理 2 中,要求区域 GGG 是单连通区域,且函数 P(x,y)P(x, y)P(x,y) 与 Q(x,y)Q(x, y)Q(x,y) 在 GGG 内具有一阶连续偏导数。如果这两个条件之一不能满足,那么定理的结论不能保证成立。例如,在例 4 中我们已经看到,当 LLL 所围成的区域含有原点时,虽然除去原点外,恒有 其原因在于区域内含有破坏函数 PPP、QQQ 连续性条件的点 0,这种点通常称为奇点。
三、二元函数的全微分求积
现在要讨论:函数 P(x,y)P(x,y)P(x,y) 与 Q(x,y)Q(x,y)Q(x,y) 满足什么条件时,表达式 P(x,y) dx+Q(x,y) dyP(x,y) \, dx + Q(x,y) \, dyP(x,y)dx+Q(x,y)dy 才是某个二元函数 u(x,y)u(x,y)u(x,y) 的全微分;当这样的二元函数存在时,如何把它求出来。
定理 3
设区域 GGG 是一个单连通域,若函数 P(x,y)P(x,y)P(x,y) 与 Q(x,y)Q(x,y)Q(x,y) 在 GGG 内具有一阶连续偏导数,则 P(x,y) dx+Q(x,y) dyP(x,y) \, dx + Q(x,y) \, dyP(x,y)dx+Q(x,y)dy 在 GGG 内为某一函数 u(x,y)u(x,y)u(x,y) 的全微分的充分必要条件是 ∂Q∂x=∂P∂y\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}∂x∂Q=∂y∂P 在 GGG 内恒成立。
证明
必要性: 假设存在某一函数 u(x,y)u(x,y)u(x,y),使得
充分性: 设已知条件 ∂Q∂x=∂P∂y\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}∂x∂Q=∂y∂P 在 GGG 内恒成立,则由定理 2 可知,起点为 M0(x0,y0)M_0(x_0, y_0)M0(x0,y0),终点为
按偏导数的定义,有
由上式得 由于这里的曲线积分与路径无关,可以取先从点 M0(x0,y0)M_0(x_0, y_0)M0(x0,y0) 沿平行于 yyy 轴的直线段到点 M(x0,y)M(x_0, y)M(x0,y),然后沿平行于 xxx 轴的直线段从点 M(x0,y)M(x_0, y)M(x0,y) 到点 M(x+Δx,y)M(x + \Delta x, y)M(x+Δx,y) 作为上式右端曲线积分的路径(图 11-15)。
这样就有
因为直线段 MNMNMN 的方程为 y=y =y= 常数,按对坐标的曲线积分的计算法,上式成为
应用定积分中值定理,得
上式两边除以 Δx\Delta xΔx,并令 Δx→0\Delta x \to 0Δx→0 取极限。由于 P(x,y)P(x,y)P(x,y) 的偏导数在 GGG 内连续,P(x,y)P(x,y)P(x,y) 本身也一定连续,于是得
同理可证
推论
设区域 GGG 是一个单连通域,若函数 P(x,y)P(x,y)P(x,y) 与 Q(x,y)Q(x,y)Q(x,y) 在 GGG 内具有一阶连续偏导数,则曲线积分 ∫P dx+Q dy\int P \, dx + Q \, dy∫Pdx+Qdy 在 GGG 内与路径无关的充分必要条件是:在 GGG 内存在函数 u(x,y)u(x,y)u(x,y),使 du=P dx+Q dydu = P \, dx + Q \, dydu=Pdx+Qdy。
根据上述定理,如果函数 P(x,y)P(x,y)P(x,y) 与 Q(x,y)Q(x,y)Q(x,y) 在单连通域 GGG 内具有一阶连续偏导数,且满足条件 ∂Q∂x=∂P∂y\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}∂x∂Q=∂y∂P,那么 P dx+Q dyP \, dx + Q \, dyPdx+Qdy 是某个函数的全微分,这函数可用公式 (3-6) 来求出。因为公式 (3-6) 中的曲线积分与路径无关,为计算简便起见,可以选择平行于坐标轴的直线段连成的折线 M0RMM_0RMM0RM 或 M0SMM_0SMM0SM 作为积分路线(图 11-16),当然要假定这些折线完全位于 GGG 内。
在公式 (3-6) 中取 M0RMM_0RMM0RM 为积分路线,得
在公式 (3-6) 中取 M0SMM_0SMM0SM 为积分路线,则函数 uuu 也可表为
例5与例6的全微分求积和全微分方程的应用
例5 验证:在右半平面 (x>0)(x > 0)(x>0) 内是某个函数的全微分,并求出一个这样的函数。
解答过程:
-
给定函数和条件:
- P=x+yP = x + yP=x+y
- Q=x+yQ = x + yQ=x+y
在右半平面内,恒有 ∂Q∂x=∂P∂y\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}∂x∂Q=∂y∂P,因此在右半平面内 Pdx+QdyPdx + QdyPdx+Qdy 是某个函数的全微分。
-
求解函数 u(x,y)u(x,y)u(x,y):
-
取积分路线如图11-17所示,利用公式 (3-6):
-
计算 ∫(x+y) dx\int (x + y) \, dx∫(x+y)dx 和 ∫(x+y) dy\int (x + y) \, dy∫(x+y)dy:
-
因此,函数 u(x,y)u(x, y)u(x,y) 为:
因此,所求函数为:
-
例6 验证:在整个 xOyxOyxOy 面内,xy2dx+x2ydyxy^2dx + x^2ydyxy2dx+x2ydy 是某个函数的全微分,并求出一个这样的函数。
解答过程:
-
给定函数和条件:
- P=xy2P = xy^2P=xy2
- Q=x2yQ = x^2yQ=x2y
-
求解函数 u(x,y)u(x,y)u(x,y):
-
取积分路线如图11-18所示,利用公式 (3-6):
-
计算 ∫xy2 dx\int xy^2 \, dx∫xy2dx 和 ∫x2y dy\int x^2 y \, dy∫x2ydy:
-
因此,函数 u(x,y)u(x, y)u(x,y) 为:
因此,所求函数为:
-
全微分方程
全微分方程的通解
- 充分必要条件:
-
由定理 3 可知,当 P(x,y)P(x,y)P(x,y) 与 Q(x,y)Q(x,y)Q(x,y) 在单连通域 GGG 内具有一阶连续偏导数时,方程 P(x,y)dx+Q(x,y)dy=0P(x,y)dx + Q(x,y)dy = 0P(x,y)dx+Q(x,y)dy=0 成为全微分方程的充分必要条件是:
-
当此条件满足时,全微分方程的通解为:
其中 CCC 是常数。
-
例7 求解方程
方程:
解答过程:
-
确定函数 PPP 和 QQQ:
- P(x,y)=5x4+3x2−yP(x,y) = 5x^4 + 3x^2 - yP(x,y)=5x4+3x2−y
- Q(x,y)=3x2y−3xy2+y2Q(x,y) = 3x^2 y - 3xy^2 + y^2Q(x,y)=3x2y−3xy2+y2
-
计算混合偏导数:
- ∂P∂y=−1\frac{\partial P}{\partial y} = -1∂y∂P=−1
-
验证条件:
- 验证条件成立,因此方程是全微分方程。
-
求解通解:
-
由公式 (3-8),有
-
计算积分:
- f(y)f(y)f(y) 是 yyy 的函数。
-
-
-
结合两部分积分,确定 f(y)f(y)f(y):
因此,方程的通解为:
这就是通过全微分方程的求解方法得到的通解。
四、曲线积分的基本定理
若曲线积分 F⋅dr\mathbf{F} \cdot d\mathbf{r}F⋅dr 在区域 GGG 内与积分路径无关,则称向量场 F\mathbf{F}F 为保守场。下面的定理给出了平面曲线积分与路径无关的另一种形式的条件,并为计算保守场中的曲线积分提供了一种简便的方法。
定理 4(曲线积分的基本定理)
其中 LLL 是位于 GGG 内起点为 AAA、终点为 BBB 的任一分段光滑曲线。
证明
设 LLL 的向量方程为起点 AAA 对应参数 t=αt = \alphat=α,终点 BBB 对应参数 t=βt = \betat=β。
由假设 f(x,y)f(x,y)f(x,y) 在 GGG 内可微,且
于是
证毕。
说明
定理 4 表明,对于势场 F\mathbf{F}F,曲线积分 ∫LF⋅dr\int_L \mathbf{F} \cdot d\mathbf{r}∫LF⋅dr 的值仅依赖于它的势函数 fff 在路径 LLL 的两端点的值,而不依赖于两点间的路径,即积分在 GGG 内与路径无关。也就是说,势场是保守场。
公式 (3-9) 是与微积分基本公式 ∫abf(x) dx=F(b)−F(a)\int_a^b f(x) \, dx = F(b) - F(a)∫abf(x)dx=F(b)−F(a) (其中 F′(x)=f(x)F'(x) = f(x)F′(x)=f(x))完全类似的向量微积分的相应公式,称为曲线积分的基本公式。
应用示例
例 1
验证向量场 F=(2x,3y)\mathbf{F} = (2x, 3y)F=(2x,3y) 在区域 GGG 内是保守场,并求曲线积分 ∫LF⋅dr\int_L \mathbf{F} \cdot d\mathbf{r}∫LF⋅dr,其中 LLL 是从点 A(0,0)A(0,0)A(0,0) 到点 B(1,2)B(1,2)B(1,2) 的直线。
解答过程:
-
确认保守场:
- 计算 P=2xP = 2xP=2x 和 Q=3yQ = 3yQ=3y 的偏导数:
y∂P 的条件,因此 F\mathbf{F}F 是保守场。
- 计算 P=2xP = 2xP=2x 和 Q=3yQ = 3yQ=3y 的偏导数:
-
求势函数:
- 由于 F=∇f\mathbf{F} = \nabla fF=∇f,有
- 积分得到: f
- 由于 F=∇f\mathbf{F} = \nabla fF=∇f,有
-
计算曲线积分:
- 由定理 4,曲线积分为:
- 计算 f(1,2)f(1,2)f(1,2) 和 f(0,0)f(0,0)f(0,0):
- 所以:
- 计算 f(1,2)f(1,2)f(1,2) 和 f(0,0)f(0,0)f(0,0):
- 由定理 4,曲线积分为:
例 2
解答过程:
-
检查保守场条件:
- 计算 P=−yP = -yP=−y 和 Q=xQ = xQ=x 的偏导数:
- 计算 P=−yP = -yP=−y 和 Q=xQ = xQ=x 的偏导数:
-
计算曲线积分:
- 直接计算曲线积分 ∫LF⋅dr\int_L \mathbf{F} \cdot d\mathbf{r}∫LF⋅dr,其中 LLL 是从 A(1,0)A(1,0)A(1,0) 到 B(0,1)B(0,1)B(0,1) 的直线。
- 设参数方程为:
- 计算 F⋅dr\mathbf{F} \cdot d\mathbf{r}F⋅dr:
- 曲线积分为:
通过这些例子和定理 4,我们能够理解并应用曲线积分的基本定理来验证保守场并计算相应的曲线积分。