2.6 矩阵的分块

 

2.6 矩阵的分块

矩阵分块是一种将矩阵划分为若干子矩阵的方法。这种方法在矩阵运算中非常有用,可以简化计算并提高运算效率。

2.6.1 分块矩阵

分块方法示例

例如,对于矩阵 AAA:

我们可以将其按照如下方式进行分块:

其中:

矩阵的分块方法有很多种,没有一个通用的标准。对于矩阵分块后的运算,有与通常矩阵运算完全类似的运算法则,但有两点需要特别注意:一是必须保证相关运算有意义,二是保证分块有利于简化运算。

例子分析

例 2.38

直接验证容易证明,若 A=(A100A2)A = \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix}A=(A1​0​0A2​​),其中 A1A_1A1​ 和 A2A_2A2​ 都是可逆的方阵,则:

例 2.39

设 AAA 和 BBB 分别为 mmm 阶和 nnn 阶可逆矩阵。证明 (A00B)\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}(A0​0B​) 可逆,并求其逆矩阵。

证明:

构造分块矩阵,并对其实施初等变换可得:

因此,矩阵可逆,且:

例 2.40

设 AAA 可逆,并求 A−1A^{-1}A−1。

证明由 ∣A∣=∣B∣∣D∣≠0|A| = |B||D| \neq 0∣A∣=∣B∣∣D∣=0 知 AAA 可逆。设 X,TX, TX,T 分别是与 B,DB, DB,D 同阶的方阵。于是由:

得:

由此得:

于是:

2.6.2 分块矩阵的初等变换

类似于通常矩阵的初等变换,我们可以定义分块矩阵的初等变换。分块矩阵的初等变换也有三种类型:

  1. 交换分块矩阵的两行(列);
  2. 用一个适当阶数的可逆矩阵左(右)乘分块矩阵的某一行(列)的各子块;
  3. 将分块矩阵的某一行(列)的各子块加上一个适当行数和列数的矩阵左(右)乘分块矩阵的另一行(列)所对应的子块。

在具体运算过程中,需要注意两点:一是所有运算必须有意义;二是初等行变换只能是在某一行(列)左乘一矩阵,初等列变换只能是在某一行(列)右乘一矩阵。

例子分析

例 2.42

设分块矩阵 P=(AB0C)P = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}P=(A0​BC​),其中 AAA 和 CCC 分别是 mmm 阶和 nnn 阶可逆矩阵,BBB 为 m×nm \times nm×n 矩阵。证明 PPP 可逆,并求 P−1P^{-1}P−1。

证明:

类似于元素为实数的矩阵的求逆方法,构造如下分块矩阵,并对其实施初等变换:

因此,矩阵 PPP 可逆,且:

例 2.43

证明:可逆上三角矩阵的逆矩阵仍然是上三角矩阵。

证明:

对 nnn 阶矩阵 AAA 的阶数用数学归纳法。

当 n=1n=1n=1 时结论显然成立。设 n=k−1n=k-1n=k−1 时结论成立。将可逆的上三角矩阵 AkA_kAk​ 按如下形式分块:

其中 Ak−1A_{k-1}Ak−1​ 为 k−1k-1k−1 阶上三角矩阵。易知 akk≠0a_{kk} \neq 0akk​=0,Ak−1A_{k-1}Ak−1​ 可逆。由归纳假设,Ak−1A_{k-1}Ak−1​ 的逆矩阵仍为上三角矩阵。因此 Ak−1A_k^{-1}Ak−1​ 也是上三角矩阵。由归纳法可知结论成立。

结论

矩阵的分块方法在矩阵运算中具有重要意义。通过分块矩阵的运算和初等变换,可以简化计算过程,提高计算效率。希望本文能够帮助你更好地理解矩阵分块及其运算方法,为你的学习和应用提供帮助。

 

 

 

 

 

 

 

  • 25
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏驰和徐策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值