- 博客(30)
- 收藏
- 关注
原创 背景建模与前景检测(一)——混合高斯GMM
混合高斯模型GMM 混合高斯模型GMM我总结的有两种实现方法,一种是直接使用OPENCV中的MOG函数实现前景检测;另外一种是自己根据GMM的原理编写程序。两种方法对比,方法一比方法二简单,速度快。但是方法二后期可改动的空间大,可以结合其他算法。以下贴出两种方法的实现代码,我是在opencv2.4.10+vs2010中实验通过的。方法一:
2017-03-17 12:05:43 6568 3
转载 背景建模与前景检测(四)——codebook
转自王先荣先生的博客:http://www.cnblogs.com/xrwang/archive/2012/04/24/MPCBBGM.html多阶编码本模型(Multi phase codebook model)作者:王先荣 注:这是2010年所写的文章,因为要发论文到杂志上的缘故,这篇文章放到博客几天便隐藏起来了,最近论文正是刊出,所以文章又重见天日了。您可以在后面的地
2017-03-17 11:39:48 1097
转载 背景建模及前景检测(三)——NBGModel
转自王先荣先生的博客:http://www.cnblogs.com/xrwang/archive/2010/04/12/BackgroundGenerationAndForegroundDetectionPhase3.html作者:王先荣 在上一篇文章里,我尝试翻译了《Nonparametric Background Generation》,本文主要介绍以下内容:如何实现
2017-03-17 11:38:00 552
转载 背景建模与前景检测(二)——非参数背景生成
转自:http://www.cnblogs.com/xrwang/archive/2010/03/27/BackgroundGenerationAndForegroundDetectionPhase2.html作者:王先荣 本文尝试对《学习OpenCV》中推荐的论文《Nonparametric Background Generation》进行翻译。由于我的英文水平很差,断断续
2017-03-17 11:30:47 4157
原创 simulink中如何将scope图像导出保存成图片格式
在matlab命令框中输入:shh = get(0,'ShowHiddenHandles');set(0,'ShowHiddenHandles','On')set(gcf,'menubar','figure')set(gcf,'CloseRequestFcn','closereq')set(gcf,'DefaultLineClipping','Off')set(0,'Sho
2018-01-08 09:53:24 33744 2
转载 matlab中的switch-case语句
switch-case语句的一般表达形式为:switch〈选择判断量〉Case 选择判断值1选择判断语句1case 选择判断值2选择判断语句2……otherwise判断执行语句end与其他的程序设计语言的switch-case语句不同的是,在MATLAB语言中,当其中一个case语句后的条件为真时,switch
2018-01-03 17:19:31 30494 2
转载 图像处理、计算机视觉领域稍微容易中的期刊
模式识别,计算机视觉领域,期刊 (1)pattern recognition letters, 从投稿到发表,一年半时间(2)Pattern recognition 不好中,时间长(3)IEICE Transactions on Information and Systems, 作者中有一个必须是会员。收费高,审稿快。影响因子0.4(4)Internatio
2017-06-27 14:54:51 6843 1
转载 图像清晰度的评价指标
无参考图像的清晰度评价方法 from: http://nkwavelet.blog.163.com/blog/static/227756038201461532247117 在无参考图像的质量评价中,图像的清晰度是衡量图像质量优劣的重要指标,它能够较好的与人的主观感受相对应,图像的清晰度不高表现出图像的模糊。本文针对无参考
2017-05-24 09:50:17 94922 12
转载 图像卷积与滤波器关系
图像卷积与滤波的一些知识点zouxy09@qq.comhttp://blog.csdn.net/zouxy09 之前在学习CNN的时候,有对卷积进行一些学习和整理,后来就烂尾了,现在稍微整理下,先放上来,以提醒和交流。一、线性滤波与卷积的基本概念 线性滤波可以说是图像处理最基本的方法,它可以允许我们对图像进行处理,产生很多不同的
2017-05-07 11:38:31 1949
原创 图像小波分解与重构
小波变换原理 所谓的小波的小是针对傅里叶波而言,傅里叶波指的是在时域空间无穷震荡的正弦(或余弦波)。 相对而言,小波指的是一种能量在时域非常集中的波,它的能量有限,都集中在某一点附近,而且积分的值为零,这说明它与傅里叶波一样是正交波。 举一些小波的例子:可以看到,能量集中在x轴0值附近,以y轴的0值为基线,上下两个区域的波形面积相等。
2017-05-03 22:57:43 45890 2
原创 为什么说图像的低频是轮廓,高频是噪声和细节
图像的频率:灰度值变化剧烈程度的指标,是灰度在平面空间上的梯度。(1)什么是低频? 低频就是颜色缓慢地变化,也就是灰度缓慢地变化,就代表着那是连续渐变的一块区域,这部分就是低频. 对于一幅图像来说,除去高频的就是低频了,也就是边缘以内的内容为低频,而边缘内的内容就是图像的大部分信息,即图像的大致概貌和轮廓,是图像的近似信息。(2)什么是高频? 反过来,
2017-04-27 20:30:48 47693 23
原创 高斯白噪声
本文科普一下高斯白噪声(white Gaussian noise,WGN)。 百度百科上解释为“高斯白噪声,幅度分布服从高斯分布,功率谱密度服从均匀分布”,听起来有些晦涩难懂,下面结合例子通俗而详细地介绍一下。 白噪声,如同白光一样,是所有颜色的光叠加而成,不同颜色的光本质区别是的它们的频率各不相同(如红色光波长长而频率低,相应的,紫色光波长短而频率高)。白噪声在功率谱上(若以
2017-04-27 10:59:52 15210 3
原创 均方根值、均方根误差以及标准差的区别
1、均方根值(RMS)也称作为效值,它的计算方法是先平方、再平均、然后开方。 2、均方根误差,它是观测值与真值偏差的平方和观测次数n比值的平方根,在实际测量中,观测次数n总是有限的,真值只能用最可信赖(最佳)值来代替.方根误差对一组测量中的特大或特小误差反映非常敏感,所以,均方根误差能够很好地反映出测量的精密度。均方根误差,当对某一量进行甚多次的测量时,取这一测
2017-04-24 16:27:08 56042
转载 数字图像处理]常见噪声的分类与Matlab实现
转自:http://blog.csdn.net/zhoufan900428/article/details/376953571.研究噪声特性的必要性 本文的内容主要介绍了常见噪声的分类与其特性。将噪声建模,然后用模型去实现各式各样的噪声。 实际生活中的各种照片的老化,都可以归结为以下老化模型。 这个模型很简
2017-04-24 16:21:16 13438
转载 Matlab 图像处理 增加图像亮度(曝光度)算法
转载来自:http://blog.sina.com.cn/s/blog_67d185b80101ferj.html在图像处理中经常遇到需要提高图像亮度或者曝光度的时候,所以我实验了一种比较有效的算法,算法很简单:I表示要处理的较暗图像,T表示处理后的比较亮的图像T(x)=I(x)+(1-I(x))*I(x)算法思想就是通过非线性叠
2017-04-23 10:00:29 10491 3
原创 matlab:Warning: Unable to determine the number of frames in this file.
在使用 VideoReader读视频时经常会遇到这样的问题:Warning: Unable to determine the number of frames in this file.没有找到更好的解决办法,如果你是做研究的话,不要求实时性的话,可以这样解决:采用语句: filename='video.avi'; vidObj=Vi
2017-04-21 17:42:16 1244
转载 数字图像处理,经典对比度增强算法
关于图像增强必须清楚的基本概念1.图像增强的目的:1)改善图像的视觉效果,2)转换为更适合于人或机器分析处理的形式3)突出对人或机器分析有意义的信息4)抑制无用信息,提高图像的使用价值5)增强后的图像并不一定保真2,图像增强的方法分类:1)从处理对象分类:灰度图像,(伪)彩色图像2)从处理策略分类:全局处理,局部处理(ROI
2017-04-20 15:58:45 35664
转载 应用小波图像去噪的Matlab 实现
小波图像去噪的方法大概分为3类1:基于小波变换摸极大值原理2:基于小波变换系数的相关性3:基于小波阈值的去噪。基于小波阈值的去噪方法3个步骤:1: 计算含噪声图像的小波变换。选择合适的小波基和小波分解层数J,运用Matlab 分解算法将含有噪声图像进行J层小波分解,得到相应的小波分解系数。2:对分解后的高频系数进行阈值量化,对于从1 到J
2017-04-20 15:57:20 7393 2
转载 数字图像处理之低通滤波器实现原理及方法(Matlab)
转自http://blog.csdn.net/zhoufan900428/article/details/171942891.傅里叶变换与频域 在之前的文中,我们已经进行过一些基本的图像处理。比如,使用低通滤波可以将图像模糊,也有些许降噪的作用。这些都是在空间域内进行的滤波处理,这个处理主要是依靠卷积来进行计算的。首先,从连续的一维卷积入手,如下所示。
2017-04-19 15:00:14 22097 1
转载 图像小波变换的matlab实现
3. 图像小波变换的 Matlab 实现3.1 一维小波变换的 Matlab 实现(1) dwt 函数功能:一维离散小波变换格式:[cA,cD]=dwt(X,'wname') [cA,cD]=dwt(X,Lo_D,Hi_D)说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数 'wname' 对信号 X 进行分解,cA、cD 分别
2017-04-18 16:29:43 32011
转载 离散余弦变换
1.预备知识1.1可分离变换二维傅立叶变换可用通用的关系式来表示:式中:x, u=0, 1, 2, …, M-1;y, v=0, 1, 2, …, N-1;g(x,y,u,v)和h(x,y,u,v)分别称为正向变换核和反向变换核。 如果满足 :则称正、反变换核是可分离的。进一步,如果g1和g2,h1和h2在函数形式上一样
2017-04-06 17:51:58 6273 2
原创 矩阵分块及其运算
mat2cell函数就是将矩阵转化成胞元数组(cell array),用数学的语言讲就是矩阵分块。其意义和用法可以用matlab的帮助文档说清楚:而cellfun函数就是对每一个块做相同的操作,例如求和、求均值等等,用这个函数就避免了写for循环了,也算是matlab向量化运算的一个例子。下面用一个例子说明之。% 生成一个10*5的随机矩阵,矩阵取值在0到50内的整数matr
2017-04-06 17:49:03 18007
转载 matlab的Regionprops详解及多目标框选
Regionprops:用途是get the properties of region,即用来度量图像区域属性的函数。语法:STATS = regionprops(L,properties)描述:测量标注矩阵L中每一个标注区域的一系列属性。L中不同的正整数元素对应不同的区域,例如:L中等于整数1的元素对应区域1;L中等于整数2的元素对应区域2;以此类推。返回值STATS是一
2017-03-30 20:46:42 5916 1
转载 MATLAB常用形态学操作函数
MATLAB常用形态学操作函数 (2009-07-15 14:54:25)转载▼常用形态学操作函数1、dilate函数——膨胀该函数能够实现二值图像的膨胀操作,有以下形式:BW2=dilate(BW1,SE)BW2=dilate(BW1,SE,…,n)其中:BW2=dilate(BW1,SE)表示使用二值结构要素矩阵SE队图像数据矩阵
2017-03-21 17:05:55 4060
转载 背景建模算法的数学理论
转自:http://underthehood.blog.51cto.com/2531780/484191背景建模算法1 基本原理视频图像中运动目标检测的一种方法,其基本思想是对图像的背景进行建模。一旦背景模型建立,将当前的图像与背景模型进行某种比较,根据比较结果确定前景目标(需要检测的运动目标)。2 难点(1) 环境光照的变化(光照突然性的变化和缓慢的变化)
2017-03-17 11:51:29 938
转载 VS2010快捷键大全及设置
设置快捷键,打开VS2010 工具->环境-> 键盘-> 应用以下其他键盘映射方案(M)-> Visual C#2005VS2010版快捷键Ctrl+E,D —-格式化全部代码Ctrl+E,F —-格式化选中的代码CTRL + SHIFT + B生成解决方案CTRL + F7生成编译CTRL + O打开文件CTRL + SHIFT + O打开
2017-03-15 08:59:25 530
原创 opencv2.4.10+vs2010无法查找或打开 PDB 文件的问题
opencv2.4.10+vs2010调试的时候,经常有朋友遇到这种问题:“Win32Project3.exe”(Win32): 已加载“D:\software\VS2013\VS2013 文档\Win32Project3\Debug\Win32Project3.exe”。已加载符号。“Win32Project3.exe”(Win32): 已加载“C:\Windows\SysWOW6
2017-03-14 16:52:41 3887
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人