8.18.1 ACM-ICPC 概率论 基本概念

8.18.1 ACM-ICPC 概率论 基本概念

概率论是数学的一个重要分支,在ACM-ICPC竞赛中常常被用来解决各种涉及随机事件的问题。理解概率论的基本概念对于竞赛选手来说至关重要。本节将介绍概率论的基本概念,包括概率空间、事件、概率、条件概率、独立性等。

概率空间

概率空间是概率论的基础,由三个元素组成:样本空间(Sample Space)、事件(Event)和概率函数(Probability Function)。

样本空间

样本空间是所有可能结果的集合。我们用符号 SSS 表示样本空间。例如,在掷一次硬币的实验中,样本空间为 S={正面,反面}S = \{正面, 反面\}S={正面,反面}。

事件

事件是样本空间的子集。一个事件发生意味着该事件中的至少一个结果发生。例如,在掷一次硬币的实验中,事件“出现正面”可以表示为 E={正面}E = \{正面\}E={正面}。

概率函数

概率函数 PPP 是一个从样本空间的事件集合到区间 [0,1][0, 1][0,1] 的映射。它满足以下三个条件:

  1. P(A)≥0P(A) \geq 0P(A)≥0 对于任何事件 AAA。
  2. P(S)=1P(S) = 1P(S)=1。
  3. 对于任意互斥事件 AAA 和 BBB,P(A∪B)=P(A)+P(B)P(A \cup B) = P(A) + P(B)P(A∪B)=P(A)+P(B)。

概率

概率是一个事件发生的可能性,用一个0到1之间的数表示。简单事件的概率可以通过实验结果的频率来估计。例如,在掷一次硬币的实验中,如果我们假设硬币是公平的,则事件“出现正面”的概率为 P(正面)=0.5P(正面) = 0.5P(正面)=0.5。

条件概率

条件概率表示在事件 BBB 已经发生的条件下,事件 AAA 发生的概率,记作 P(A∣B)P(A|B)P(A∣B)。其计算公式为: P(A∣B)=P(A∩B)P(B)P(A|B) = \frac{P(A \cap B)}{P(B)}P(A∣B)=P(B)P(A∩B)​ 其中,P(A∩B)P(A \cap B)P(A∩B) 是事件 AAA 和 BBB 同时发生的概率。

独立性

两个事件 AAA 和 BBB 是独立的,如果事件 AAA 的发生与事件 BBB 的发生没有任何关系,即 P(A∣B)=P(A)P(A|B) = P(A)P(A∣B)=P(A)。独立事件的概率满足: P(A∩B)=P(A)⋅P(B)P(A \cap B) = P(A) \cdot P(B)P(A∩B)=P(A)⋅P(B)

示例分析

示例1:掷骰子

假设我们掷一个公平的六面骰子,求事件“掷出偶数”的概率。

样本空间为 S={1,2,3,4,5,6}S = \{1, 2, 3, 4, 5, 6\}S={1,2,3,4,5,6}。

事件“掷出偶数”可以表示为 E={2,4,6}E = \{2, 4, 6\}E={2,4,6}。

因为骰子是公平的,每个结果的概率相等,所以: P(E)=∣E∣∣S∣=36=0.5P(E) = \frac{|E|}{|S|} = \frac{3}{6} = 0.5P(E)=∣S∣∣E∣​=63​=0.5

示例2:条件概率

假设我们有一个袋子,里面有3个红球和2个蓝球。我们随机抽取两个球,求第一个球是红球且第二个球也是红球的概率。

首先,计算第一个球是红球的概率:

在第一个球已经是红球的条件下,袋子里剩下2个红球和2个蓝球,所以第二个球是红球的条件概率为:

所以,第一个球是红球且第二个球也是红球的概率为:

结论

通过本节的学习,我们了解了概率论的基本概念及其在实际问题中的应用。这些基础知识不仅对于解决ACM-ICPC竞赛中的概率问题非常重要,也是理解更复杂概率模型和统计分析的基础。在实际应用中,掌握这些概念可以帮助我们更好地分析和预测随机事件的结果,提高问题解决的准确性和效率。


8.18.1 ACM-ICPC 概率论 基本概念

概率论是研究随机现象及其规律的数学分支,在ACM-ICPC竞赛中起着重要作用。掌握概率论的基本概念有助于解决涉及随机事件的问题。本文将介绍概率空间、事件、概率、条件概率和独立性等基本概念。

概述

在研究具体的随机现象时,我们通常着重关注以下要素:

  • 样本空间 Ω\OmegaΩ:指明随机现象所有可能出现的结果。
  • 事件域 F\mathcal{F}F:表示我们所关心的所有事件。
  • 概率 PPP:描述每一个事件发生的可能性大小。

样本空间与随机事件

定义

一个随机现象中可能发生的不能再细分的结果被称为 样本点。所有样本点的集合称为 样本空间,通常用 Ω\OmegaΩ 来表示。

一个 随机事件 是样本空间 Ω\OmegaΩ 的子集,由若干样本点构成,用大写字母 A,B,C,⋯A, B, C, \cdotsA,B,C,⋯ 表示。

对于一个随机现象的结果 ω\omegaω 和一个随机事件 AAA,我们称事件 AAA 发生了当且仅当 ω∈A\omega \in Aω∈A。

例如,掷一次骰子得到的点数是一个随机现象,其样本空间可以表示为 Ω={1,2,3,4,5,6}\Omega = \{1, 2, 3, 4, 5, 6\}Ω={1,2,3,4,5,6}。设随机事件 AAA 为“获得的点数大于4”,则 A={5,6}A = \{5, 6\}A={5,6}。若某次掷骰子得到的点数 ω=3\omega = 3ω=3,由于 ω∉A\omega \notin Aω∈/A,故事件 AAA 没有发生。

事件的运算

由于我们将随机事件定义为了样本空间 Ω\OmegaΩ 的子集,故我们可以将集合的运算(如交、并、补等)移植到随机事件上。记号与集合运算保持一致。

特别的,事件的并 A∪BA \cup BA∪B 也可记作 A+BA + BA+B,事件的交 A∩BA \cap BA∩B 也可记作 ABABAB,此时也可分别称作 和事件积事件

事件域

研究具体的随机现象时,我们需要明确哪些事件是我们感兴趣的。根据随机事件的定义,显然有 F⊂2Ω\mathcal{F} \subset 2^{\Omega}F⊂2Ω(记号 2Ω2^{\Omega}2Ω 表示由 Ω\OmegaΩ 的所有子集组成的集合族),但 F=2Ω\mathcal{F} = 2^{\Omega}F=2Ω 却不是必须的。这在样本空间 Ω\OmegaΩ 有限时可能有些难以理解,毕竟 2Ω2^{\Omega}2Ω 尽管更大了但仍然有限。而当 Ω\OmegaΩ 为无穷集时,2Ω2^{\Omega}2Ω 的势变得更大,其中也难免会出现一些“性质不太好”且我们不关心的事件,这时为了兼顾这些事件而放弃一些性质就显得得不偿失了。

尽管 F=2Ω\mathcal{F} = 2^{\Omega}F=2Ω 不是必须的,这并不代表 2Ω2^{\Omega}2Ω 的任一子集都能成为事件域。我们通常会对一些事件进行运算得到的结果事件的概率感兴趣,因此我们希望事件域 F\mathcal{F}F 满足下列条件:

  • ∅∈F\varnothing \in \mathcal{F}∅∈F;
  • 若 A∈FA \in \mathcal{F}A∈F,则补事件 Aˉ∈F\bar{A} \in \mathcal{F}Aˉ∈F;
  • 若有一列事件 An∈F,n=1,2,3,…A_n \in \mathcal{F}, n = 1, 2, 3, \dotsAn​∈F,n=1,2,3,…,则 ⋃An∈F\bigcup A_n \in \mathcal{F}⋃An​∈F。

简言之,事件域 F\mathcal{F}F 对补运算、和可数并下是封闭的,且包含元素 ∅\varnothing∅。

可以证明满足上述三个条件的事件域 F\mathcal{F}F 对可数交也是封闭的。

例子

以掷骰子为例,当样本空间记为 Ω={1,2,3,4,5,6}\Omega = \{1, 2, 3, 4, 5, 6\}Ω={1,2,3,4,5,6} 时,以下两个集合能够成为事件域:

  • F1={∅,Ω}\mathcal{F}_1 = \{ \varnothing, \Omega \}F1​={∅,Ω}
  • F2={∅,{1,3,5},{2,4,6},Ω}\mathcal{F}_2 = \{ \varnothing, \{1, 3, 5\}, \{2, 4, 6\}, \Omega \}F2​={∅,{1,3,5},{2,4,6},Ω}

但以下两个集合则不能:

  • F3={∅,{1},Ω}\mathcal{F}_3 = \{ \varnothing, \{1\}, \Omega \}F3​={∅,{1},Ω}(对补不封闭)
  • F4={{1,3,5},{2,4,6}}\mathcal{F}_4 = \{ \{1, 3, 5\}, \{2, 4, 6\} \}F4​={{1,3,5},{2,4,6}}(不含有 ∅\varnothing∅ 且对并不封闭)

概率

定义

古典定义: 在概率论早期实践中,由于涉及到的随机现象都比较简单,具体表现为样本空间 Ω\OmegaΩ 是有限集,且直观上所有样本点是等可能出现的,因此人们便总结出了下述定义:

如果一个随机现象满足:

  • 只有有限个基本结果;
  • 每个基本结果出现的可能性是一样的;

那么对于每个事件 AAA,定义它的概率为 P(A)=#(A)#(Ω)P(A) = \frac{\#(A)}{\#(\Omega)}P(A)=#(Ω)#(A)​ 其中 #(⋅)\#(\cdot)#(⋅) 表示对随机事件(一个集合)大小的度量。

后来人们发现这一定义可以直接推广到 Ω\OmegaΩ 无限的一部分情景中,于是就有了所谓 几何概型

公理化定义: 上述基于直观认识的定义在逻辑上有一个很大的漏洞:在定义“概率”这一概念时用到了“可能性”这一说法,产生了循环定义的问题。同时“等可能”在样本空间无限时会产生歧义,由此产生了包括 Bertrand 悖论 在内的一系列问题。

经过不断探索,苏联数学家柯尔莫哥洛夫于1933年在他的《概率论基础》一书中第一次给出了概率的公理化定义:

概率函数 PPP 是一个从事件域 F\mathcal{F}F 到闭区间 [0, 1] 的映射,且满足:

  1. 规范性:事件 Ω\OmegaΩ 的概率值为1,即 P(Ω)=1P(\Omega)=1P(Ω)=1。
  2. 可数可加性:若一列事件 A1,A2,⋯A_1, A_2, \cdotsA1​,A2​,⋯ 两两不交,则 P(⋃i≥1Ai)=∑i≥1P(Ai)P\left( \bigcup_{i \geq 1} A_i \right) = \sum_{i \geq 1} P(A_i)P(⋃i≥1​Ai​)=∑i≥1​P(Ai​)
概率函数的性质

对于任意随机事件 A,B∈FA, B \in \mathcal{F}A,B∈F,有:

  1. 单调性:若 A⊂BA \subset BA⊂B,则 P(A)≤P(B)P(A) \leq P(B)P(A)≤P(B)。
  2. 容斥原理: P(A+B)=P(A)+P(B)−P(AB)P(A+B) = P(A) + P(B) - P(AB)P(A+B)=P(A)+P(B)−P(AB)
  3. 差集: P(A−B)=P(A)−P(AB)P(A - B) = P(A) - P(AB)P(A−B)=P(A)−P(AB)

概率空间

研究具体的随机现象时,我们通常关注样本空间 Ω\OmegaΩ、事件域 F\mathcal{F}F 以及概率函数 PPP。我们将三元组 (Ω,F,P)(\Omega, \mathcal{F}, P)(Ω,F,P) 称为一个 概率空间

概率只有在确定的概率空间下讨论才有意义。我们前面提到的 Bertrand 悖论归根结底就是因对样本空间 Ω\OmegaΩ 的定义不明确而产生的。

  • 7
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏驰和徐策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值