求PI的近似值
题目描述
用正多边形逼近法求π的近似值。 用圆内接正多边形的边长和半径之间的关系,不断将边数翻倍并求出边长,重复这一过程,正多边形的边长就逐渐逼近圆的周长,只要圆内接正多边形的边数足够多,就可以求得所需精度的π值。 从正六边形开始。简单起见,设单位圆的半径是1,则单位圆的圆周长是2×π,设单位圆内接正i边形的边长为2b,边数加倍后正2i边形的边长为x,则:
思路
正多边形逼近法
当正多边形的边无限多时,每小段边可以近似看为圆的一小段弧,圆的周长为2πr,多边形的边数为2i,边长为x,周长为2ix,可得π=i*x/r。
但一开始我们的边数不可能很多,所以我们通过不断翻倍边数来使得其不断逼近圆的周长。(用勾股定理求出边数翻倍后的边长)
通常我们采用圆的内接六边形开始,因为圆的内接六边形边长等于半径。
代码
#include<iostream>
#include<cmath>
#include <algorithm>
using namespace std;
//假设圆的周长为1
void Pi(int k){//K-1是翻倍的次数
int i=6;//边数为6
double b,x=1;//2b为翻倍之前的边长,x为翻倍之后的边长
for(int j=1;j<k;j++){
b=x/2;//因为最后得出的值是x,需要x给b来赋边长翻倍之后的边长,所以之前要为x赋值为1
i=i*2;
x=sqrt(2-2*sqrt(1.0-b*b));
}
double tmp=x*i/2.0;
cout<<i<<" ";
printf("Pi=%.10lf",tmp);
}
int main(){
int k;
cin>>k;
Pi(k);
return 0;
}