近似算法——求PI的近似值(正多边形逼近法)

该博客介绍了通过正多边形逼近法求π的近似值,利用C++编程实现。从单位圆内接六边形开始,不断翻倍边数并应用勾股定理计算边长,随着边数增加,逼近圆周长,从而得到高精度的π值。代码中展示了如何根据边数变化计算π的详细步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

求PI的近似值


题目描述

用正多边形逼近法求π的近似值。 用圆内接正多边形的边长和半径之间的关系,不断将边数翻倍并求出边长,重复这一过程,正多边形的边长就逐渐逼近圆的周长,只要圆内接正多边形的边数足够多,就可以求得所需精度的π值。 从正六边形开始。简单起见,设单位圆的半径是1,则单位圆的圆周长是2×π,设单位圆内接正i边形的边长为2b,边数加倍后正2i边形的边长为x,则:
在这里插入图片描述
在这里插入图片描述

思路

正多边形逼近法
当正多边形的边无限多时,每小段边可以近似看为圆的一小段弧,圆的周长为2πr,多边形的边数为2i,边长为x,周长为2ix,可得π=i*x/r。
但一开始我们的边数不可能很多,所以我们通过不断翻倍边数来使得其不断逼近圆的周长。(用勾股定理求出边数翻倍后的边长)
通常我们采用圆的内接六边形开始,因为圆的内接六边形边长等于半径。

代码

#include<iostream>
#include<cmath>
#include <algorithm>
using namespace std;
//假设圆的周长为1
void Pi(int k){//K-1是翻倍的次数
    int i=6;//边数为6
    double b,x=1;//2b为翻倍之前的边长,x为翻倍之后的边长
    for(int j=1;j<k;j++){
        b=x/2;//因为最后得出的值是x,需要x给b来赋边长翻倍之后的边长,所以之前要为x赋值为1
        i=i*2;
        x=sqrt(2-2*sqrt(1.0-b*b));
    }
    double tmp=x*i/2.0;
    cout<<i<<" ";
    printf("Pi=%.10lf",tmp);

}
int main(){
    int k;
    cin>>k;
    Pi(k);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值