题目叙述
相传在古印度的 Bramah 庙中,有位僧人整天把三根柱子上的金盘倒来倒去,原来他是想把64个一个比一个小的金盘从一根柱子上移到另一根柱子上去。移动过程中恪守下述规则:每次只允许移动一只盘子,且大盘不得在小盘之上。题目的难度在于,如果用手去移动盘子,如过按照每秒移动一只盘子计算时间的话,按照上述规则将64只盘子从一个柱子移至另一个柱子上,完成时所需时间约为5800亿年。所以当盘子数量较多时,我们不得不需要借助于计算设备来代替我们进行操作,请编程给出汉诺塔问题的移动顺序。
程序清单
#include <stdio.h>
// 函数作用:把第n个圆盘从a移到c,并打印
// 形参说明:第一个参数n:第n个盘子;第二个参数a:初始柱;第三个参数c:目标柱
int Move(int n, char a, char c)
{
printf("把%d号圆盘从%c柱移动到%c柱;\n",n,a,c);
return 0;
}
// 函数作用:把前n个通过b从a移到c
// 形参说明:第一个参数n:盘子数量;第二个参数a:初始柱;第三个参数b:中间柱;第四个参数c:目标柱
int Hanoi(int n, char a, char b, char c)
{
if(n == 1){
Move(1, a, c);
}else{
Hanoi(n-1, a, c, b); //把前n-1个圆盘通过c从a移到b
Move(n, a, c); //将第n个盘子通过从a移到b
Hanoi(n-1, b, a, c); //把前n-1个圆盘通过a从b移到c
}
return 0;
}
int main()
{
int n;
printf("输入n的大小: \n");
scanf("%d",&n);
printf("移动顺序如下所示: \n");
Hanoi(n, 'a', 'b', 'c');
printf("已成功移至目标柱! \n");
return 0;
}
运行结果