信号系统与数字信号处理一点点心得

为什么要进行傅里叶变换,

为什么要讲线性时不变系统

为什么h(t)就能表征一个系统

什么是因果系统跟h(t)有什么联系,为什么有联系

什么是稳定系统跟h(t)有什么联系,为什么有联系

什么是滤波器

拉普拉斯变换又是怎么回事

拉普拉是的零极点图为什么能分析系统的特性(Z变换的同样)

Z变换到底是想干什么

这些变换在实际中怎么应用的(最困惑的)

相位到底是什么?

序列的傅里叶变换为什么是周期的连续谱

群延迟到底是什么

离散傅里叶变换到底是怎么回事

FFT又是什么

离散傅里叶变换和FFT到底有什么实际意义(我很关心实际应用)

离散滤波器到底是什么玩意(我们经常看到的就是一串抽象出来的Z公式)

为什么要变换

1.为什么要讲线性时不变系统,因为以后的讨论都是基于线性时不变系统的(至少信号系统和数字信号处理是这样),线性时不变系统的特性:1 线性2时不变性。线性就是信号叠加后输出还是叠加,时不变就说信号今天进入系统输出的波形和明天进入系统输出的波形是一样的。

2.为什么一个h(t)能表征一个系统

首先这个系统必须是线性是不变系统,这点应该牢记。推到过程是把系统输入信号分解成一群冲击信号的组合,然后利用系统的线性和是不变性,输出就是h(t)的平移,加权,叠加,其实这就是卷积了直观意义了。奥本海姆的信号系统70页那幅图困扰过我,当时脑子里全是线性时不变系统,我就想当然认为他的图不太对劲,当我再回头想想的时候,他压根没说线性是不变系统,他的那幅图不是一个h(t),而是每个&(t-t0)时刻的h(t)所以那幅图反应的不是线性时不变系统,只是线性系统(因为他只用了叠加)没有h(t)的平移(不能平移). 这最终导致了卷积的出现,有了h(t)能表征一个系统。所以卷积和h(t)是一致的,条件是线性时不变系统。

3.为什么傅里叶变换:首先说傅里叶级数,周期信号可以分解成很多正弦信号的叠加。(为什么要分解为正弦信号?)这就要提到刚刚说到了线性是不变系统了,前面已经说过的卷积和h(t)了,正是这些性质,所以就有了一种很特殊的信号,那就是是e(st),这种信号经过线性时不变系统系统后(卷积一下就可以看到)就是一个数乘以e(st)。信号系统研究的内容之一就是信号经过系统后的输出是什么样的。但是一个任意的信号太不好分析了,既然线性时不变系统和e(st)信号有这样好的品质,为什么不把信号分解成e(st)信号呢!所以就有了信号的傅里叶变换(包括傅里叶级数)分解为e(jwt)。这样的一群信号经过线性时不变系统后,就是容易分析了。前面说的那个数就是H(s)或者H(jw)了,这个的导出也是基于线性是不变性。到此就可以看出H(jw)也就表征了一个线性时不变系统系统。线性时不变系统对于信号的改变就是两个:1 加权2平移(就是相位变化)这就是H(jw)体现出来的。H(jw)就是h(t)的傅里叶变换。(为什么傅里叶变换暂时说到这,下文继续)。

4.因果系统和h(t)有什么联系:因果系统就是现在的输出和只和输入信号在此时刻以前有关,和此时刻以后无关。这就会用到卷积公式了,可以看出输出y(t)要是和此时可以后的输入信号无关那么h(t)就要在小于0为0了。无疑这个的前提也是线性时不变系统。

5. 稳定系统和h(t)联系:输入有界输出有界,也是通过卷积公式体现出来的就是h(t)绝对可和。前提也是线性是不变系统。

6. 什么是滤波器:我的理解就是任何系统都是滤波器,就连一根导线也可以算得上一个滤波器。只是滤波器更倾向于有特定性能。所谓的特定性能就是对信号平移和加权更有针对性。一句话:滤波器就是一个系统。设计滤波器就是设计这个H(jw)。

7. 再说傅里叶变换:傅里叶变换,拉普拉斯变换,z变换,几乎所有的书都要把他们类比分析,目的很简单就是让学习变的容易些,但是这容易引导我们进入另一个误区,那就是这三个变换是一样的性质,一样的应用。其实不是,傅里叶变换既分析信号也分析系统。但是拉普拉斯变换主要用于连续系统的分析,而z变换就是用于离散系统的分析,也就是分析系统的性能。拉普拉斯变换和z变换稍后再说。

傅里叶变换:先说傅里叶级数,就是把一特定周期信号分解成很多正弦信号的叠加,这样的一群正弦信号有一个基波频率,关键是这样的一群信号是怎么样叠加的。首先每个正弦信号有自己的幅值,有的可以是0。这样的一群信号其实很简单,只有两个初相位0 和pi/2,所以傅里叶级数只用求出各个正弦信号的幅值即可。然后叠加就可以了。傅里叶变换是针对非周期信号的,一般可以得到一个|F(jw)|图,和一个相位图。先说|F(jw)|图,|F(jw)|图首先是w的连续函数,也就是说w即便带限,但是w还是无穷多的,这就可以理解每个w的幅值必然趋近0,因为周期无穷大,所以|F(jw)|已经表示的不是每个w个的幅度值(乘以了一个趋于无穷大的T),而是每个w在原信号中所占的比重大小,所以叫频谱密度,跟概率密度函数一个道理。相位图又表示什么意思,我在开始学习的时候,几乎把相位给扔了,直到看到奥本海姆的第六章才开始真正理解相位的含义,前面说了信号是一群正弦信号的叠加,首先每个信号都有自己的幅值(即便趋近0),但是不是随便叠加就能得出变换前的那个信号的,比如说sin(x)和sin(x+pi)这两个信号叠加就是0。但如果是sin(x)+sin(x)就不是0。其实就是两个正弦信号的相对位子改变了,所以叠加后的信号也变了,所以对于一个特定信号,不仅每个正弦信号的幅值是一定的,而且每个正弦信号的相对位置是固定的,因为相对位置的改变会导致叠加后信号的不一样,对于一个特定的信号每个正弦信号的位置是固定的,这就产生了相位,当我找到一个参考坐标的时候相位就出来了,换句话说我把一群正弦信号都摆在坐标轴上,每个的幅值固定,相对位置固定,这样叠加就会得到一个特定的唯一的信号。假如以y轴为参考点就可以看到每个正弦信号和y轴的交点是不一样的。这就是初相位了。所以相位和幅值共同决定了一个特定唯一的信号。这也是傅里叶变换是一一对应的结果。顺便说下,傅里叶变换是正交变换,这样一一对应的结果也正是由于傅里叶变换是正交变换。所以对信号做傅里叶变换就可以得到|F(jw)|和相位图。这两个图就决定了一个信号,|Fjw)|表示了这个信号的包含所有的w,和每个w的比重,而相位图则说明了这些w的正弦函数的相对位置。再说系统函数h(t)的傅里叶变换H(jw),这和上面的理解完全是一样的,只是得提醒一下,H(jw)已经侧重于系统了,而不是侧重于把h(t)分解成那一群信号了。看到H(jw)也是两幅图,很明显但是很容易被我们忽略的是,这两幅图的意义已经发生变化了,因为H(jw)已经是表征系统了,而不是表征一个信号了,|H(jw)|表示的意思假如系统输入一个w的正弦信号时,我应该给它加权多少,对应|H(jw)|等于0的w正弦信号经过系统后肯定被过滤了,相位图则是表示对w的正弦信号平移多少,也就是把w的正弦信号向后移动多少,这自然可能使输入信号的一群正弦信号的相对位置发生改变。所以H(jw)和F(jw)所表示的意义是有区别的(侧重点不一样导致的)。

8.拉普拉斯变换:其实拉普拉斯变换更主要应用系统的分析。我看过的书上引入拉普拉斯变换都要提到,不稳定信号,也就是不可积信号。他们没有傅里叶变换(特殊的有除外),确实是这样的,但到最后很明显的是,拉普拉斯变换侧重与系统分析了(其实系统分析也是要研究系统对信号的改变,只是研究对象是所有信号)。当然也会对信号进行拉斯变换,因为它毕竟也有很多性质的,可以分析输出信号的。其实到拉斯变换我们已经不怎么关心输入信号是有这群e(st)怎么叠加的了,郑君里的书上讲的拉斯变换,讲的很多,特别是举得例子,优点是都是实际的电路,缺点也是在于此,太复杂了,很多时间我们消耗在解这样的电路上了,这会阻碍我们对概念的理解,当然拉斯变换的最终目的还是分析电路。但是可以举一些简单容易接受的例子。郑君里老师在讲拉斯变换的时候主要篇幅讲的是单边拉斯变换,这也是可以理解的,因为实际连续系统基本都是因果系统。奥本海姆主要讲的是双边的。这就导致了我第一次看的时候没看明白(两个都看了),看的很乱。乱主要在于性质上面。当时看奥本海姆的时候看的很顺,因为这完全和傅里叶类似(都是双边的),看到郑君里老师的书,就不一样了,这里说的是单边拉斯,这里就要提到零状态了(虽然这一块也需要细心理解一下,我感觉这里面没有难以理解的,就是要分清概念,前面提到的系统函数,经常用于信号的变换和h(t)的变换乘积,再反变换就可以得到输出信号,其实这是有前提的,这是零状态的情况下,拉普拉斯变换在分析系统的时候是把零状态和零输入一块考虑了,这点对于初学者要注意。所以在变换性质推到的时候和傅里叶变换有些不一样,主要这里讨论的是单边拉斯,而且由于单边,所以要考虑0时刻以前的状态,也就是系统在信号输入前,系统的储能。

9. 说一下h(t)吧:h(t)是什么前面一直没说,就是说了可以表征一个系统。h(t)是什么?哪来的?h(t)就是冲击响应,也就是冲击函数作用于系统产生的输出。那到底什么什么呢?系统又是什么呢?前面说了那么久,似乎一直在频域上讨论,所以我们从时域来看看这些东西到底是什么。对于连续的系统,就是微分方程,为什么是微分方程,这就是由于电路里面的积分微分电路了得出的方程。书上都有,但是几乎每本书在讨论这块都说的很简单,给我们学习的时候造成了一些假象,以为这些不是主要部分,其实前面的时不变性,稳定性,因果性,看的时候没有过多重视,其实后面的讨论很多都是基于这些前提的,这也是我后面学习感觉混乱的原因,也是我在前面强调的原因。再看微分方程,其实把输入x(t)令为&(t)就可以解出y(t)。这个就是冲击响应h(t),但是这也是有前提的,零状态的情况下,就是系统开始没有储能。所以用h(t)*x(t)只能得到零状态输出。对于一个给定的系统,肯定是先看有没有状态,在分析系统函数H(jw)。这个H(jw)是怎么来的,刚开始一眼就可以看出来是就是h(t)的傅里叶变换,这是有道理的,但是我们不应该忽略了另一个角度,那就是吧微分方程的每个时间函数进行变换,然后y(t)的变换除以x(t)的变换就可以得到了H(jw)。所以一个微分方程对应一个h(t),也就是对应一个H(jw).

10. z变换:其实很明显z变换主要应用于离散时间系统的分析,

11.序列的傅里叶变换(注意不是离散傅里叶,很多人可能注意到了它们的不同,但是真正理解他们的不同可能需要耗费一些时间)为什么是周期的连续谱。

首先看一下序列傅里叶变换是什么,说的是把一个时间序列分解成很多正弦序列sin(Wn)或者e(jWn)。第一次看这部分的时候,不理解,为什么离散的信号,咋变换后变成连续的了。但是奥本海姆书上的21页那些图,让我想到了很多。sin(Wn),是什么?就是对sin(wt)的采样。我假设横坐标从-1开始,在-1 0 1 2 3 4。。。都要采样,任意不同的sin(wt)放到坐标轴上就可以得到一组离散的值,试想一下这个小w可以是任意的的值啊,所以w可以是任意的0到无穷大,但是这个w的连续还不能解释为什么谱是连续的,为什么?因为这个w和W(前面有区分)是不一样的,一个时间角频率,是真实意义上的频率,但是W不是,首先看单位,w的单位是弧度每秒,但是W的单位是弧度,所以不是严格意义上的频率,这就是数字角频率!这个W是怎么来的,请看,刚才离散采样的时候,采样从0到1这个间隔wT(就是sin(wt)在这个间隔扫过的角度)的变化就是这个W,因为w是连续的,所以W肯定也是连续的了。再看为什么是周期的,公式推导很简单,但是还不能直观的理解为什么是周期的。再看刚才的采样,0点和1点的采样,正弦信号的角度变化,一般书上在这两点之间波形变化是小于一个周期,但是有没有想过,0和1之间这个正弦信号振动了很多次,就是有很多个波长,那这个w是很大的,W当然也是很大的,但是但是这个小w却不能被体现出来(采不到)。有图很好说明,哎(恕我无力啊)!只能点到。这样周期性就被体现出来了。

12. 群延迟,困扰我时间最长的一个概念,除了奥本海姆的书讨论的相对多些,其他的书都介绍的很简单。群延时 我的理解

首先就是定义式 那个负的求导式(公式不会打)首先可以看到的是对w的求导,这使得我联想到的是路程s(t)对时间的导数也就是速度V(t),导数越大,也就是速度越大,直观上就是在微小时间间隔t1~t2内,路程变化的越大。

同理群延时的定义导数(绝对值)越大,也就是意味着在微小频率间隔w1~w2内,相位的变化却是很大的。换句话说就是 微小间隔w1~w2这个频段都发生了相位变化(经过系统后),在时间上体现可能都是很短暂的(指的是等效为时间的延迟,当然也可能很大),因为一般频率都很大,而相位变化(在时间上能体现出来的)只可能在0~2pi(因为2*k*pi+0~2pi,前面的2*k*pi是没有意义的,在时间上也体现不出来延迟),,但是频段W1~W2相位变化的程度是不一样的(因为导数很大)。通俗点说吧就是w1和w2相距很近,但是相位变化却相差如此巨大(导数大),这就说明肯定有一个是不合群了(经系统后),所以其中的一个就会被拖出来(显示在时间上,两个频率可能时间延迟都很小,但是相对却很大)。其实一个特定信号就是一群w的正弦函数的加权,但是这群正弦函数的相对之间的位置固定的(针对一特定信号),其实就是每个w的初相位。一句话就是:w1和w2(相距很近)经系统后,应该有差不多一样的相位变化,既然变化差别很大就说明有一个通过系统后不合群。相对时间延迟很大,所以就被拖出来了。

群延时!=相位延迟。

相位延迟就是实际延迟,体现在时间上就是经系统后相位变化(0~2pi)除以对应的w,群延时是相对变化的大小。

顺便说下,相位变化,前面讨论了什么是相位,也说明信号经过系统后相位会变化,线性相位经常别提到,每个正弦信号经系统后都会被向后移(一般都是),就是相位变化了,但是相位变化是以时间的形式体现出来的,正是由于以时间的形式体现出来的,时间只能反映出0—2*pi的相位变化,因为sin(wt)和sin(wt+2*pi)在时间上是体现不出来的,完全重合。线性相位就是说每个正弦信号都被移了而且在时间上体现出来,都是被向后移了相同的时间。所以输出信号的所有正弦信号的相对位子没有变化。如果|H(jw)|在带限内为1,这就是理想低通滤波器了,经过此系统信号仅仅是被向后一了时间t0,t0就是系统相位函数的斜率。如果输出信号的相对位置变化了,那么叠加后的波形肯定就跟输入波形不一样了(假设幅度加权都为1),曾经看到这了时候,一个想法蹦出来了,这还是线性是不变的吗?其实仔细想想概念,这个问题根本不是问题,就是概念没吃透。

13. Z变换 其实z变换已经把我们过渡到数字信号处理了,z变化针对离散时间系统的,大部分书在讲数字信号处理的时候,一般的顺序是:先z变换,再序列傅里叶变换,再离散傅里叶变换,再就是FFT,再就是滤波器了。这样学习的时候,学到滤波器的时候,很困惑,就是z的一串公式,和离散傅里叶没关系了,当时感觉不理解这些东西。上封邮件我举得那个滤波器的例子我感觉是很好的,它可以从硬到软,从时域到频域,从简单到复杂,刻画了一个滤波器,一个系统。数字滤波器设计就是设计这样的一串z公式,其实这个z公式就是一个差分方程,滤波器是什么,就是连续输入系统的一些数进行加减乘除运算,这就是差分方程表示的意义,它就对应了一个z公式。所以我前面说过z变换也主要用于系统的研究,就是研究系统的特性了。

14. 三大变换实际中是怎么作用的:

其实这三大变换都是从另一个域来分析系统和信号的,他们的意义就是简化我们在草稿纸上的计算,方便我们分析系统的性能,设计适合需要的系统。但是所有时域上的变化都是卷积。我们感觉频域乘积能让我逃脱卷积,是的,但那只是在草稿纸上。但是FFT不是,后文讲述。说到卷积,有人说是工具,我不太认同,我认为就是一个符号,或者代号。就是把一种积分运算叫着卷积,实际还是要积分。前面一直没有就说到卷积,我想从离散的角度去讲卷积,离散的更直观一些。假如单位冲击响应从零时刻起0 1 2 3 4时刻的值分别是1 3 5 7 8,这就说第一个单位冲击进入系统,就会从进入时刻起产生这样5个输出值,不是同一时刻,是接下来连续的5个时刻,这就是说当下一个时刻的输入信号进入时,上一个产生的响应还有,那就要两个时刻的相加,所以卷积为什么是反转,平移,相乘,相加了,画出图就很明显了,这就是卷积的意义。

15.FFT:前面说了三大变换只是我们在草稿纸上的简化计算,时域还是卷积,FFT不是。说到FFT就要说离散傅里叶变换。离散傅里叶变换,书上都说为了适合计算机计算。这句话说的很简单,但是我们容易忽略一个很重要的事实,那就是计算机开始计算频域了,因此要把频谱给离散化了。所以离散福利也变化已经跟前面三大变换不一样了。以前都是我们在草稿纸上先是正变换再频域相乘,再反变换,得出输出信号。离散傅里叶变换把这个计算过程搬到计算机上了,而不是仅仅停留在草稿纸上了。而FFT我感觉只是个算法,利用离散变换本身内在的性质,简化计算过程,提高运算效率。

16.再说变换:变换是什么,我认为就是把信号的特征给提取出来,而且要一一对应,这样才能反变换,通信中的编码可以被理解为正变换,解码就可以被理解反变换。举个不太恰当的例子,比如传输一个矩形波,我给它傅里叶级数求出来,然后只是传输这些系数,到接收端那边在加上相应的sin函数,就可以得到矩形波了,当然实际中我认为这个求系数的系统是很复杂的,还不如直接传输经济。这也是我想到了,图像的压缩,有所谓的标准,以我现在的感觉,也应该是一种变换,当然还有其他的技术。

数字信号只说了

Z变换和离散傅里叶变换,我就是感觉这些是相对重要地,当然还有很多东西,但是那些应该都不是很难理解,所以我都没有过多涉及。比如说相关卷积啊,为什么会有FFF啊,圆周相关啊等等吧!!写到这里感觉还有好多东西没有写出来。如果全写出来,太多了。好多东西需要自己独立思考,那样记忆深刻,但是一本好书和好老师我认为都是很重要的,引导作用。

 

  • 19
    点赞
  • 59
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值