目标检测
文章平均质量分 84
学习的各经典目标检测算法的进化与演变过程。
tang-shopping
做个有用的人!
展开
-
nanodet阅读:(1)概述
nanodet概述原创 2022-06-18 16:05:48 · 1862 阅读 · 0 评论 -
nanodet阅读:(3)Loss计算及推理部分
nanodet的阅读笔记原创 2022-06-10 16:51:08 · 4958 阅读 · 3 评论 -
海思开发:yolo v5的 focus层 移植到海思上的方法
一、前言经网友提醒,yolo v2的 passthrough 层与 v5 的 focus 层很像,因为海思是支持 passthrough 层的,鉴于此,花了点时间了解了一下,提出一些浅见,抛砖引玉。二、区别上文我说的是,二者很像,说明它们还是有区别的,现在说说区别。1. passthrough 层出于严谨,结合海思文档图片与 passthrough 源码来一起理解,先看看 passthrough 源码:// 它的源码是 c++ 的,不是 python 格式int reorg_cpu(THFlo原创 2020-12-15 11:39:15 · 7617 阅读 · 40 评论 -
海思开发:yolo v5s :pytorch->onnx->caffe->nnie
一、前言主要是遇见几个问题,赶紧记录一下,免得后面兄弟们吃同样的亏。二、过程1. 报错:Reshape dimention number shall be 2 or 4仔细看了一下,和我 reshape 处理的数据维度有关,而转换代码里 reshape 最高支持维度数是 4。而我的数据shape 是 (1, 3, H, W, class_num + 5),这是个五维数组。本来就想在后面加个条件 : len(shape) == 5,又怕出现新的错误,上网找了篇其他的转换代码,点进去看了下,发现原创 2020-11-28 20:05:51 · 16709 阅读 · 134 评论 -
目标检测算法复习:SPP-Net算法
一、SPP-Net算法出现的原因SPP-Net算法的前面一个算法 R-CNN算法,它虽然是个开创性的目标检测算法。但是它的缺点十分明显:① CNN网络后面接的FC层需要固定的输入大小,限制网络的输入大小 ;② 候选区域会塞给CNN网络用于提取特征向量的,这会有大量的重复计算,造成的计算冗余。基于感受野的特征坐标映射1.看其他人博客的时候,他们只是给出下面公式,而公式怎么来的,他们也不清楚...原创 2019-11-27 20:35:00 · 1240 阅读 · 0 评论 -
目标检测算法复习:R-CNN算法
#一,前言讲的很详细了: https://blog.csdn.net/WoPawn/article/details/52133338 ;这篇是论文翻译: https://blog.csdn.net/v1_vivian/article/details/78599229 。原创 2019-10-23 21:08:06 · 279 阅读 · 0 评论