1:读取图片
#include <cv.h>
#include <highgui.h>
int main()
{
IplImage *img = 0;
img = cvLoadImage("/home/todayac/Desktop/img/test.jpg",-1);
cvNamedWindow("lena", 1);
cvShowImage("lena", img);
cvWaitKey(0);
return 0;
}
2:把RGB图片的灰度处理
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv/cv.h>
#include <cstdio>
using namespace cv;
void RGB2GRAY(IplImage* src){
//创建2个窗体,分别显示源图像和处理后的灰度图
cvNamedWindow("RGB");
cvNamedWindow("GRAY");
//显示源图像
cvShowImage("RGB",src);
//创建一个源图像一样的IplImage指针
IplImage* dst = cvCreateImage(cvGetSize(src),src->depth,1);
//色彩空间转换,转换类型为CV_BGR2GRAY
cvCvtColor(src,dst,CV_BGR2GRAY);
//显示灰度图
cvShowImage("GRAY",dst);
//释放资源
cvSaveImage("/home/todayac/Desktop/img/test2.jpg",dst);
cvReleaseImage(&dst);
cvWaitKey(0);
cvDestroyWindow("RGB");
cvDestroyWindow("GRAY");
}
//主函数
int main(int argc, char** argv){
IplImage* img = cvLoadImage("/home/todayac/Desktop/img/test1.jpg");
RGB2GRAY(img);
while(1){
if(cvWaitKey(100)==27)
break;
}
cvReleaseImage(&img);
return 0;
}
3:图像二值化
//图像的二值化
#include <opencv2/opencv.hpp>
#include <cv.h>
#include <iostream>
#include <cstdio>
using namespace cv;
using namespace std;
IplImage *g_pGrayImage = NULL;
IplImage *g_pBinaryImage = NULL;
const char *pstrWindowsBinaryTitle = "二值图";
void on_trackbar(int pos)
{
// 转为二值图
cvThreshold(g_pGrayImage, g_pBinaryImage, pos, 255, CV_THRESH_BINARY);
// 显示二值图
cvShowImage(pstrWindowsBinaryTitle, g_pBinaryImage);
}
int main( int argc, char** argv )
{
const char *pstrWindowsSrcTitle = "/home/todayac/Desktop/img/test1.jpg";
const char *pstrWindowsToolBarName = "255";
// 从文件中加载原图
IplImage *pSrcImage = cvLoadImage("/home/todayac/Desktop/img/test1.jpg", CV_LOAD_IMAGE_UNCHANGED);
// 转为灰度图
g_pGrayImage = cvCreateImage(cvGetSize(pSrcImage), IPL_DEPTH_8U, 1);
cvCvtColor(pSrcImage, g_pGrayImage, CV_BGR2GRAY);
// 创建二值图
g_pBinaryImage = cvCreateImage(cvGetSize(g_pGrayImage), IPL_DEPTH_8U, 1);
// 显示原图
cvNamedWindow(pstrWindowsSrcTitle, CV_WINDOW_AUTOSIZE);
cvShowImage(pstrWindowsSrcTitle, pSrcImage);
// 创建二值图窗口
cvNamedWindow(pstrWindowsBinaryTitle, CV_WINDOW_AUTOSIZE);
// 滑动条
int nThreshold = 120;
cvCreateTrackbar(pstrWindowsToolBarName, pstrWindowsBinaryTitle, &nThreshold, 254, on_trackbar);
on_trackbar(1);
cvWaitKey(0);
cvDestroyWindow(pstrWindowsSrcTitle);
cvDestroyWindow(pstrWindowsBinaryTitle);
cvReleaseImage(&pSrcImage);
cvReleaseImage(&g_pGrayImage);
cvReleaseImage(&g_pBinaryImage);
return 0;
}
4:图像的压缩
#include <iostream>
#include <fstream>
#include <cv.h>
#include <highgui.h>
using namespace std;
using namespace cv;
double getPSNR(Mat& src1, Mat& src2, int bb=0);
int main(int argc, char** argv){
Mat src = imread("/home/todayac/Desktop/img/test1.jpg");
cout<<"origin image size: "<<src.dataend-src.datastart<<endl;
cout<<"height: "<<src.rows<<endl<<"width: "<<src.cols<<endl<<"depth: "<<src.channels()<<endl;
cout<<"height*width*depth: "<<src.rows*src.cols*src.channels()<<endl<<endl;
//(1)jpeg压缩
vector<uchar> buff;//buffer for coding
vector<int> param = vector<int>(2);
param[0]=CV_IMWRITE_JPEG_QUALITY;
param[1]=95;//default(95) 0-100
imencode(".jpg",src,buff,param);
cout<<"coded file size(jpg): "<<buff.size()<<endl;//自动拟合大小。
Mat jpegimage = imdecode(Mat(buff),CV_LOAD_IMAGE_COLOR);
//(2) intaractive jpeg compression
namedWindow("jpg");
int q=90;
createTrackbar("压缩比率","jpg",&q,100);
int key = 0;
while(key!='q')
{
param[0]=CV_IMWRITE_JPEG_QUALITY;
param[1]=q;
imencode(".jpg",src,buff,param);
Mat show = imdecode(Mat(buff),CV_LOAD_IMAGE_COLOR);
imshow("jpg",show);
imwrite("/home/todayac/Desktop/img/test12.jpg",show);
key = waitKey(33);
}
}
double getPSNR(Mat& src1, Mat& src2, int bb){
int i,j;
double sse,mse,psnr;
sse = 0.0;
Mat s1,s2;
cvtColor(src1,s1,CV_BGR2GRAY);
cvtColor(src2,s2,CV_BGR2GRAY);
int count=0;
for(j=bb;j<s1.rows-bb;j++) {
uchar* d=s1.ptr(j);
uchar* s=s2.ptr(j);
for(i=bb;i<s1.cols-bb;i++){
sse += ((d[i] - s[i])*(d[i] - s[i]));
count++;
}
}
if(sse == 0.0 || count==0){
return 0;
} else{
mse =sse /(double)(count);
psnr = 10.0*log10((255*255)/mse);
return psnr;
}
}
5:图像直方处理对图像加强
#include <opencv/cv.h>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace cv;
using namespace std;
int ImageStretchByHistogram(IplImage *src,IplImage *dst);
int main(){
IplImage* pImg = 0;
pImg=cvLoadImage("/home/todayac/Desktop/img/test1.jpg",-1);
//创建一个灰度图像
IplImage* GrayImage = cvCreateImage(cvGetSize(pImg), IPL_DEPTH_8U, 1);
IplImage* dstGrayImage = cvCreateImage(cvGetSize(pImg), IPL_DEPTH_8U, 1);
cvCvtColor(pImg, GrayImage, CV_BGR2GRAY);
ImageStretchByHistogram(GrayImage,dstGrayImage);
cvNamedWindow( "dstGrayImage", 1 ); //创建窗口
cvNamedWindow( "GrayImage", 1 ); //创建窗口
cvShowImage( "dstGrayImage", dstGrayImage ); //显示图像
cvShowImage( "GrayImage", GrayImage ); //显示图像
Mat show = Mat(dstGrayImage);
imwrite("/home/todayac/Desktop/img/test12.jpg",show);
// imwrite("/home/todayac/Desktop/img/test13.jpg",dstGrayImage);
cvWaitKey(0); //等待按键
cvDestroyWindow( "dstGrayImage" );//销毁窗口
cvDestroyWindow( "GrayImage" );//销毁窗口
cvReleaseImage( &pImg ); //释放图像
cvReleaseImage( &GrayImage ); //释放图像
cvReleaseImage( &dstGrayImage ); //释放图像
return 0;
}
int ImageStretchByHistogram(IplImage *src,IplImage *dst)
/*************************************************
根据直方图进行图像增强,将图像灰度的域值拉伸到0-255
Input: 单通道灰度图像
Output: 同样大小的单通道灰度图像
*************************************************/
{
//p[]存放图像各个灰度级的出现概率;
//p1[]存放各个灰度级之前的概率和,用于直方图变换;
//num[]存放图象各个灰度级出现的次数;
assert(src->width==dst->width);
float p[256],p1[256],num[256];
//清空三个数组
memset(p,0,sizeof(p));
memset(p1,0,sizeof(p1));
memset(num,0,sizeof(num));
int height=src->height;
int width=src->width;
long wMulh = height * width;
//求存放图象各个灰度级出现的次数
for(int x=0; x < src->width; x++ ){
for(int y=0; y < src->height; y++ ) {
uchar v=((uchar*)(src->imageData + src->widthStep*y))[x];
num[v]++;
}
}
//求存放图像各个灰度级的出现概率
for(int i=0;i<256;i++) {
p[i]=num[i]/wMulh;
}
//求存放各个灰度级之前的概率和
for(int i=0;i<256;i++){
for(int k=0;k<=i;k++)
p1[i]+=p[k];
}
//直方图变换
for(int x=0; x < src->width; x++ ){
for(int y=0; y < src->height; y++ ) {
uchar v=((uchar*)(src->imageData + src->widthStep*y))[x];
((uchar*)(dst->imageData + dst->widthStep*y))[x]= p1[v]*255+0.5;
}
}
return 0;
}
6:熟悉Mat的一些遍历
#include <opencv/cv.h>
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <cstdio>
#include <iostream>
using namespace std;
using namespace cv;
/***************************************************************
*
* 内容摘要:本例采用8种方法对图像Mat的像素进行扫描,并对像素点的像
* 素进行压缩,压缩间隔为div=64,并比较扫描及压缩的效率,效
* 率最高的是采用.ptr及减少循环次数来遍历图像,并采用位操
* 作来对图像像素进行压缩。
***************************************************************/
//利用.ptr和数组下标进行图像像素遍历
void colorReduce0(Mat &image, int div = 64)
{
int nl = image.rows;
int nc = image.cols * image.channels();
//遍历图像的每个像素
for(int j=0; j<nl ;++j)
{
uchar *data = image.ptr<uchar>(j);
for(int i=0; i<nc; ++i)
{
data[i] = data[i]/div*div+div/2; //减少图像中颜色总数的关键算法:if div = 64, then the total number of colors is 4x4x4;整数除法时,是向下取整。
}
}
}
//利用.ptr和 *++ 进行图像像素遍历
void colorReduce1(Mat &image, int div = 64)
{
int nl = image.rows;
int nc = image.cols * image.channels();
//遍历图像的每个像素
for(int j=0; j<nl ;++j)
{
uchar *data = image.ptr<uchar>(j);
for(int i=0; i<nc; ++i)
{
*data++ = *data/div*div + div/2;
}
}
}
//利用.ptr和数组下标进行图像像素遍历,取模运算用于减少图像颜色总数
void colorReduce2(Mat &image, int div = 64)
{
int nl = image.rows;
int nc = image.cols * image.channels();
//遍历图像的每个像素
for(int j=0; j<nl ;++j)
{
uchar *data = image.ptr<uchar>(j);
for(int i=0; i<nc; ++i)
{
data[i] = data[i]-data[i]%div +div/2; //利用取模运算,速度变慢,因为要读每个像素两次
}
}
}
//利用.ptr和数组下标进行图像像素遍历,位操作运算用于减少图像颜色总数
void colorReduce3(Mat &image, int div = 64)
{
int nl = image.rows;
int nc = image.cols * image.channels();
int n = static_cast<int>(log(static_cast<double>(div))/log(2.0)); //div=64, n=6
uchar mask = 0xFF<<n; //e.g. div=64, mask=0xC0
//遍历图像的每个像素
for(int j=0; j<nl ;++j)
{
uchar *data = image.ptr<uchar>(j);
for(int i=0; i<nc; ++i)
{
*data++ = *data&mask + div/2;
}
}
}
//形参传入const conference,故输入图像不会被修改;利用.ptr和数组下标进行图像像素遍历
void colorReduce4(const Mat &image, Mat &result,int div = 64)
{
int nl = image.rows;
int nc = image.cols * image.channels();
result.create(image.rows,image.cols,image.type());
//遍历图像的每个像素
for(int j=0; j<nl ;++j)
{
const uchar *data_in = image.ptr<uchar>(j);
uchar *data_out = result.ptr<uchar>(j);
for(int i=0; i<nc; ++i)
{
data_out[i] = data_in[i]/div*div+div/2; //减少图像中颜色总数的关键算法:if div = 64, then the total number of colors is 4x4x4;整数除法时,是向下取整。
}
}
}
//利用.ptr和数组下标进行图像像素遍历,并将nc放入for循环中(比较糟糕的做法)
void colorReduce5(Mat &image, int div = 64)
{
int nl = image.rows;
//遍历图像的每个像素
for(int j=0; j<nl ;++j)
{
uchar *data = image.ptr<uchar>(j);
for(int i=0; i<image.cols * image.channels(); ++i)
{
data[i] = data[i]/div*div+div/2; //减少图像中颜色总数的关键算法:if div = 64, then the total number of colors is 4x4x4;整数除法时,是向下取整。
}
}
}
//利用迭代器 cv::Mat iterator 进行图像像素遍历
void colorReduce6(Mat &image, int div = 64)
{
Mat_<Vec3b>::iterator it = image.begin<Vec3b>(); //由于利用图像迭代器处理图像像素,因此返回类型必须在编译时知道
Mat_<Vec3b>::iterator itend = image.end<Vec3b>();
for(;it != itend; ++it)
{
(*it)[0] = (*it)[0]/div*div+div/2; //利用operator[]处理每个通道的像素
(*it)[1] = (*it)[1]/div*div+div/2;
(*it)[2] = (*it)[2]/div*div+div/2;
}
}
//利用.at<cv::Vec3b>(j,i)进行图像像素遍历
void colorReduce7(cv::Mat &image, int div = 64)
{
int nl = image.rows;
int nc = image.cols;
//遍历图像的每个像素
for(int j=0; j<nl ;++j)
{
for(int i=0; i<nc; ++i)
{
image.at<cv::Vec3b>(j,i)[0] = image.at<cv::Vec3b>(j,i)[0]/div*div + div/2;
image.at<cv::Vec3b>(j,i)[1] = image.at<cv::Vec3b>(j,i)[1]/div*div + div/2;
image.at<cv::Vec3b>(j,i)[2] = image.at<cv::Vec3b>(j,i)[2]/div*div + div/2;
}
}
}
//减少循环次数,进行图像像素遍历,调用函数较少,效率最高。
void colorReduce8(cv::Mat &image, int div = 64)
{
int nl = image.rows;
int nc = image.cols;
//判断是否是连续图像,即是否有像素填充
if(image.isContinuous())
{
nc = nc*nl;
nl = 1;
}
int n = static_cast<int>(log(static_cast<double>(div))/log(2.0));
uchar mask = 0xFF<<n;
//遍历图像的每个像素
for(int j=0; j<nl ;++j)
{
uchar *data = image.ptr<uchar>(j);
for(int i=0; i<nc; ++i)
{
*data++ = *data & mask +div/2;
*data++ = *data & mask +div/2;
*data++ = *data & mask +div/2;
}
}
}
const int NumTests = 9; //测试算法的数量
const int NumIteration = 10; //迭代次数
int main(int argc, char* argv[])
{
char path[] = "/home/todayac/Desktop/img/test1.jpg";
int64 t[NumTests],tinit;
Mat image1;
Mat image2;
//数组初始化
int i=0;
while(i<NumTests)
{
t[i++] = 0;
}
int n = NumIteration;
//迭代n次,取平均数
for(int i=0; i<n; ++i)
{
image1 = imread(path);
if(!image1.data)
{
cout<<"read image failue!"<<endl;
return -1;
}
// using .ptr and []
tinit = getTickCount();
colorReduce0(image1);
t[0] += getTickCount() - tinit;
// using .ptr and *++
image1 = imread(path);
tinit = getTickCount();
colorReduce1(image1);
t[1] += getTickCount() - tinit;
// using .ptr and [] and modulo
image1 = imread(path);
tinit = getTickCount();
colorReduce2(image1);
t[2] += getTickCount() - tinit;
// using .ptr and *++ and bitwise
image1 = imread(path);
tinit = getTickCount();
colorReduce3(image1);
t[3] += getTickCount() - tinit;
//using input and output image
image1 = imread(path);
tinit = getTickCount();
colorReduce4(image1,image2);
t[4] += getTickCount() - tinit;
// using .ptr and [] with image.cols * image.channels()
image1 = imread(path);
tinit = getTickCount();
colorReduce5(image1);
t[5] += getTickCount() - tinit;
// using .ptr and *++ and iterator
image1 = imread(path);
tinit = getTickCount();
colorReduce6(image1);
t[6] += getTickCount() - tinit;
//using at
image1 = imread(path);
tinit = getTickCount();
colorReduce7(image1);
t[7] += getTickCount() - tinit;
//using .ptr and * ++ and bitwise (continuous+channels)
image1 = imread(path);
tinit = getTickCount();
colorReduce8(image1);
t[8] += getTickCount() - tinit;
}
namedWindow("Result");
imshow("Result",image1);
namedWindow("Result Image");
imshow("Result Image",image2);
imwrite("/home/todayac/Desktop/img/test31.jpg",image1);
imwrite("/home/todayac/Desktop/img/test41.jpg",image2);
cout<<endl<<"-------------------------------------------------------------------------"<<endl<<endl;
cout<<"using .ptr and [] = "<<1000*t[0]/getTickFrequency()/n<<"ms"<<endl;
cout<<"using .ptr and *++ = "<<1000*t[1]/getTickFrequency()/n<<"ms"<<endl;
cout<<"using .ptr and [] and modulo = "<<1000*t[2]/getTickFrequency()/n<<"ms"<<endl;
cout<<"using .ptr and *++ and bitwise = "<<1000*t[3]/getTickFrequency()/n<<"ms"<<endl;
cout<<"using input and output image = "<<1000*t[4]/getTickFrequency()/n<<"ms"<<endl;
cout<<"using .ptr and [] with image.cols * image.channels() = "<<1000*t[5]/getTickFrequency()/n<<"ms"<<endl;
cout<<"using .ptr and *++ and iterator = "<<1000*t[6]/getTickFrequency()/n<<"ms"<<endl;
cout<<"using at = "<<1000*t[7]/getTickFrequency()/n<<"ms"<<endl;
cout<<"using .ptr and * ++ and bitwise (continuous+channels) = "<<1000*t[8]/getTickFrequency()/n<<"ms"<<endl;
cout<<endl<<"-------------------------------------------------------------------------"<<endl<<endl;
waitKey();
return 0;
}