本文的主要目的是对基于gradient的一些approximation知识点以及优化方法做一个简单的review。详细内容参考引用链接,这里只列出key points,主要是在遗忘的时候能够快速catch up…
Jacobian矩阵和Hessian矩阵
引用:
- 雅可比矩阵(描述的一阶导数矩阵). . 把它理解为一阶gradient就好了。例如在Automatic Differenciation中,利用Chain Rule就可以将求导过程作为一系列Jacobian矩阵的乘积。
- 海森矩阵(描述的二阶导数矩阵). . 另, 则此函数的雅克比矩阵为.求此雅克比矩阵(转置后作为向量函数)的雅克比矩阵,即得到海森矩阵。
Automatic Differenciation
引用: