Taylor, Jacobian, Hessian, Newton and all the else about gradient

本文的主要目的是对基于gradient的一些approximation知识点以及优化方法做一个简单的review。详细内容参考引用链接,这里只列出key points,主要是在遗忘的时候能够快速catch up…

Jacobian矩阵和Hessian矩阵

引用:

  1. Jacobian矩阵和Hessian矩阵
  2. 雅克比与海森
  • 雅可比矩阵(描述f:R^n\rightarrow R^m的一阶导数矩阵). J_{ij}=\partial f_i/\partial x_j. 把它理解为一阶gradient就好了。例如在Automatic Differenciation中,利用Chain Rule就可以将求导过程作为一系列Jacobian矩阵的乘积。
  • 海森矩阵(描述f:R^n\rightarrow R的二阶导数矩阵). H_{ij}=\frac{\partial^2 f}{\partial x_i\partial x_j}. 另y = f(x_1,x_2,...), 则此函数的雅克比矩阵为[\partial f/\partial x_1, \partial f/\partial x_2,...].求此雅克比矩阵(转置后作为向量函数)的雅克比矩阵,即得到海森矩阵。

Automatic Differenciation

引用:

  1. Auto Differenciation(Wikipedia)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值