- 博客(141)
- 资源 (4)
- 收藏
- 关注
原创 自动驾驶技术的一些关键点
地图众包 专业 Lidar+camera 点云结合定位GPS 北斗 WIFI 基站... Feature定位感知雷达 Lidar(激光) 毫米波 超声波 视觉 detection tracking classification segmentation 预测model based model free车道序列选择规划路径规划 A* 轨迹规划:离散踩点,成本最优,平滑3维:速度,距离,时间控制mpc pi.
2021-10-28 10:02:28
239
原创 [文章推荐]Matrices from a geometric perspective
发现一篇不错的文章,从geometry角度重新介绍了点、向量、坐标、坐标系、矩阵等等概念,读完还是有收获的。链接如下:Matrices from a geometric perspective | Coranachttps://www.coranac.com/documents/geomatrix/
2021-09-15 09:30:13
209
原创 《聪明的投资者》摘要——价值投资的起点
目录巴菲特序言做些傻事-防守型做些趣事-进攻性做些好事-利人利己本文是笔者阅读《聪明的投资者》第四版中译本的一些笔记和感想。如果你没有时间细读,看这篇就够了。巴菲特序言做些傻事-防守型对于防御性的投资者,重要的是避免重大失误。另外就是轻松自由,省心省力。所以投资前,一定要知道自己是哪一类。对此,投资建议为:分散投资以控制风险。10-30支股票 选大型企业,杰出企业,融资保守的企业 股息发放20年以上 市盈率<25在指数基金出现后,一切都更加简单了:闭眼买
2021-09-05 12:20:01
2222
转载 熵增定律:为什么那么多人因此顿悟了 - 思维有了模型的文章 - 知乎
熵增定律:为什么那么多人因此顿悟了 - 思维有了模型的文章 - 知乎 https://zhuanlan.zhihu.com/p/72896309
2021-08-05 10:00:43
449
原创 Control Theory 初探
前言半年前读了金观涛/华国凡1986年的《控制论与科学方法论》,对所谓的“老三论”(系统论、控制论、信息论)产生了浓厚兴趣。我查阅了一些文章和书籍,也了解了钱学森老先生对系统科学的层次划分。这一划分概括如下(来自知乎):第一层:系统观。次是系统学,它是系统科学的基本理论。这是系统的哲学和方法论的观点,是系统科学通向马克思主义哲学的桥梁和中介。第二层:技术科学层次。有运筹学、系统理论、控制论、信息论等,是系统工程的直接理论第三层:工程技术层次次。系统工程、自动化技术、通信技术等,这是直接改造自然界
2021-07-27 13:37:36
347
原创 一个悲观主义者的积极思考——职业篇[待续2021/06/27]
职业规划我适合做职业规划吗?并不是每个人都适合做详细的职业规划。如果对未来N年尚没有详细的计划,不必焦虑,有一个笼统的方向就好(选择学术界、企业界、某个行业…),如果这个也没有,耐心寻找就好。我的长期目标是什么?这里的“长期目标”,是类似“初心”一样的东西。例如,我选择在企业界从事计算机算法工作。工作两年后,我重新思考了这个问题。目前我的回答是:“用简洁优美的算法解决现实问题。不断加深对现实世界(看到问题的本质)和对算法理论的系统性(成体系)理解”。关于天赋我们常看到各种成功
2021-06-27 19:00:23
338
原创 [NOTE]Discrete Optimization by Prof. Pascal Van Hentenryck
春节假期https://www.coursera.org/learn/discrete-optimization
2021-03-04 21:09:52
302
原创 Time Series Forecasting (三) : hierachical and grouped time series
这一篇的主题主要是如何处理一组有层级关系的序列预测。例如我们进行未来30天的游客数量预测,需要涉及多个颗粒度:城市,省和国家。当然我们可以对每个维度单独建模进行预测,但是很明显这多个序列是有层级关系的:城市维度的预测应该可以聚合到省份而进一步向上聚合到国家。各序列单独预测并不能保证这种一致性。那么就涉及到对这一方向的进一步研究。笔者偶然发现Rob J Hyndman的书(见上图)中是有这样一章的Chapter 10Forecasting hierarchical or groupedtime s...
2020-12-20 19:23:53
428
原创 Forecasting (二) : Deep Models [ongoing]
Deep modelsDeepARSalinas, D., Flunkert, V., Gasthaus, J., & Januschowski, T. (2020). DeepAR: Probabilistic forecasting with autoregressive recurrent networks. International Journal of Forecasting. https://doi.org/10.1016/j.ijforecast.2019.07.001A.
2020-12-20 18:39:32
436
原创 滑雪记要[ongoing]
先学会摔倒,向侧后方倒,而不是正后方,因为雪板较长,前后倒是危险的。 转弯,主要靠重心调整,左转重心放在右雪板,右转相反。
2020-12-20 09:03:40
142
1
原创 ppt制作的一些要点
今日听了两个讲座,关于ppt的制作,感觉收获还是挺大的。一些要点做到,应该应付80%的ppt足够了。进阶的话,大家可以找书看看:《有说服力的ppt》。逻辑核心的目的是沟通:要知道你的听众关注点是什么 补全这个句子:我要在_时间内,在_地点,用_内容,说服_,得到_结果。这些细节会提示我们的ppt页数,字体,确认听众对象和演讲结果。 一些场景: 传递信息:SCQA. Situation, Complication, Question, Answer。灰指甲广告脑补一下 表达观点:PREP.
2020-11-22 12:10:32
1033
原创 Forecasting (一):introduction
本篇文章希望对demand forecasting涉及的技术进行框架性的整理。首先参考的是供应链及库存相关的著作,一般其中都会有关于forecasting的一章。ReferencesWaters, D. (2003).Inventory control and management 2nd. John Wiley & Sons. (偏OM) Axsäter, S. (2015).Inventory control(Vol. 225) 3rd. Springer. (更新,信息更多些)...
2020-11-09 10:49:50
606
原创 MLE、MAP、贝叶斯估计、MCMC、EM
机器学习中的MLE、MAP、贝叶斯估计 - 李文哲的文章 - 知乎 https://zhuanlan.zhihu.com/p/37215276上面这篇文章对所提到的三种方法做了清晰的对比。总结图:另外文中总结:几点重要的Take-aways:每一个模型定义了一个假设空间,一般假设空间都包含无穷的可行解; MLE不考虑先验(prior),MAP和贝叶斯估计则考虑先验(prior); MLE、MAP是选择相对最好的一个模型(point estimation), 贝叶斯方法则是通过观测数据来估
2020-10-31 14:04:37
1551
原创 常见分布总结
Source:https://www.youtube.com/watch?v=YXLVjCKVP7U&list=PLTNMv857s9WVzutwxaMb0YZKW7hoveGLS&ab_channel=zedstatistics链接中的Youtube频道对统计相关的各种概念有很好的讲解,强烈推荐。本篇简单摘要记录一下常见的分布。这些常见分布Excel都是支持的。Binomial2 outcomes per trial, proba p or (1-p) Trials a.
2020-10-20 10:02:43
4105
原创 计算机算法与运筹优化算法与机器学习算法
同样是算法,不同领域的理解好像不是很一样。运筹优化背景人员有时混淆模型与算法的概念,机器学习可能也有同样的现象。目前笔者的理解是,以算法导论为依据,算法这个概念的定义是能接收输入,并且能通过明确定义的有限的一系列步骤得出期望的输出的过程。然而,算法导论和一些介绍运筹优化算法的书籍覆盖的内容确有不同。主要原因可能是两个社区的最初关注点不同,例如计算机社区从图灵机,计算复杂度等计算理论发展过来,研究的更多是底层基础算法和数据结构,直接面向计算机。而运筹优化的发展可能更多是从实际生活生产问题过来的。首先关注对
2020-10-03 11:08:05
1032
原创 从“系统思维”说开去
Referencehttps://zhuanlan.zhihu.com/p/46535533 https://zh.wikipedia.org/wiki/%E7%B3%BB%E7%BB%9F%E7%A7%91%E5%AD%A6 https://www.jianshu.com/p/99c463e2bed8 https://blog.csdn.net/tangwing/article/details/108894585 https://zh.wikipedia.org/wiki/%E5%8F%B2%
2020-10-01 18:35:45
600
转载 [转]系统科学丨钱学森:我对系统学认识的历程
转注:近期对系统论有很大兴趣,于网络上偶然浏览到下面这篇文章,记录了钱学森先生对系统科学的一些言论思考。私以为钱老这等大师的思考是比较有深度的,即便已经是二三十年前的记录,也依然有参考价值,尤其是其对科学研究的层次以及与哲学的联系的相关表述,引人入胜。-----《系统科学进展》作为《系统科学丛书》的首部著作,收集了包括钱学森、关肇直、周光召、John Holland等著名科学家的重要文献。本期,为大家选取钱老1986年1月7日在系统学讨论班第一次活动时的讲话。...
2020-10-01 13:24:38
1416
原创 稻盛和夫-创造高收益
今天花了一天时间浏览了稻盛和夫的畅销书《创造高收益》。对稻盛和夫书中提到的很多理念,我深感赞同,在这里简单摘要几点以自勉。关于企业存在的意义稻盛和夫以及他的经验告诉我们,一家企业如果希望走的长久,一定要有符合‘道义’的理念作为导引。这一理念需要被所有员工认同,并感到所有人是在共同为了同一目的奋斗。例如稻盛和夫的公司,最初以“将稻盛和夫的技术昭示天下”作为理念,并不能引起员工们的共鸣,经过深入的思考,最终理念定为“在追求所有员工身心两方面幸福的同时,为社会进步和发展做出贡献”。稻盛和夫在做很多重要
2020-09-20 18:48:11
816
原创 [Casual note] Time series prediction
Time series prediction- 在主要feature是时间时用的比较多。如果有很多额外的feature,考虑深度模型- Trend: 长期的趋势- Seasonality:季节性- Cyclicity:周期性 比如经济周期- Irregularity:unpredictable factors。最好在数据层面就剔除掉# Before forecasting- Make sure the series is stationary : devoid of seasonali
2020-09-01 10:14:20
195
原创 Multi-agent and distributed RL [Topic under construction]
It's unrealistic to consider the environement as static with only one agent: it's almost always necessary to consider the reaction of multiple agents on each others' moves. With multiple agent, the space of control (action) becomes exponentially large on t
2020-08-23 15:50:40
180
原创 Can agents learn inside of their own dreams?
这次阅读一篇NIPS2018的文章,关于World Models in Reinforcement Learning.
2020-07-27 16:44:51
117
原创 Pytorch学习纪要[ongoing]
莫烦python教程和视频是不错的入门资源:https://morvanzhou.github.io/搭建神经网络,可以自建class继承torch.nn.Module,也可以使用nn.Sequential快速搭建 使用torch.save(net.state_dict,'file.pkl') 比torch.save(net,'file.pkl')会稍快一些,实测生成的文件前者确实较小。 Batch training: ds=torch.utils.data.TensorDataset(x,y);
2020-07-26 15:20:40
151
原创 攀岩记要[ongoing]
重心放在下半身,尽量贴近岩壁但是手臂要避免弯曲用力 要善于调整重心和姿势来使得抓握方向与岩点相符 身体向上的移动,如同爬楼梯,大部分是退步在发力,手部只是简单控制一下方向而已 无论什么运动,总是需要整个身体联动,综合发力的。...
2020-07-26 15:19:29
129
原创 [NOTE] Advice and Perspectives on RL Research Frontiers - Rich Sutton in DLRLSS 2019
根据我的习惯,当然先放ressources:slides,video. 这是Sutton在DLRLSS 2019 summer school上的一个lecture,从他自己的角度分享了对RL领域的一些理解,他目前的研究方向及前沿等。一些思考还是很有启发的。个别要点摘录于此,细节可以自行阅读、观看。Developing your own research thoughtsThere are no authorities in science. Be ambitious but also humble.
2020-07-21 13:48:11
171
原创 [Note In progress] Model-based Reinforcement Learning
Model based methods can be used in Control Theory. Environment has assumptions and approximations.Learn the model. By supervised learning, for instance. Play the game then train the world model. World models: one of my favorite approaches in which th...
2020-07-19 14:11:13
162
原创 [NOTE] Algorithms in E-Commerce Company (Stitch Fix), talk by YuanBo
Stitch FixA DS (Data-Science) driven online shopping model. Customers receives boxes and choose to keep or return the items inside.Culture这个在电商模式上有所创新的美国电商,给予了数据科学非常重要的位置。从组织架构上DS部门的定位不是为其他部门服务,而是提供business insight和innovation. 另外,团队并未像通常一样按照技术智能划分为算法、数据
2020-06-21 16:32:04
191
转载 频率学派与贝叶斯学派
贝叶斯学派与频率学派有何不同? - 郭志敏的回答 - 知乎 https://www.zhihu.com/question/20587681/answer/139100761看了一系列资料后我的粗浅层面理解:频率学派(frequentist):认为概率即事件长时间内发生的频率,描述的是客观存在的事实,即涉及到的未知参数其实值是固定的,只是我们不知道。例如,在频率派的哲学语境里,飞机事故的概率指的是长期来看,飞机事故的频率值。对许多事件来说,这样解释概率是有逻辑的,但对某些没有长期频率的事件来说,这样解
2020-06-08 07:47:38
282
原创 A Road Map for Deep Learning
点这个:https://towardsdatascience.com/a-road-map-for-deep-learning-b9aee0b2919f
2020-06-07 10:37:54
170
原创 [NOTE in progress] ECE236C - Optimization Methods for Large-Scale Systems [on going]
Source:http://www.seas.ucla.edu/~vandenbe/ee236c.htmlIntroductionOutlineFirst-order algorithms Decomposition and splitting Second-order algorithms for unconstrained optimization Interior point for conic optimizationGradientConvexity-∇^2(f..
2020-06-06 22:57:26
504
转载 【转载】Overview of gradient descent algorithms
Overview of gradient descent algorithmsAn overview of gradient descent optimization algorithmsGradient descent is the preferred way to optimize neural networks and many other machine learning algorithms but is often used as a black box. This post..
2020-06-02 07:41:44
172
原创 [NOTE in progress] Distributed Optimization and Statistical Learning via ADMM - Boyd
Reading notes of the paper "Distributed Optimization and Statistical Learning via ADMM" byBoyd, Parikh, Chu, Peleato and Eckstein.IntroductionADMM : developped in the 70s with roots in the 50s. Proved to be highly related to other methods like Douglas.
2020-05-17 17:37:23
590
原创 Taylor, Jacobian, Hessian, Newton and all the else about gradient
本文的主要目的是对基于gradient的一些approximation知识点以及优化方法做一个简单的review。详细内容参考引用链接,这里只列出key points,主要是在遗忘的时候能够快速catch up…Jacobian矩阵和Hessian矩阵引用:Jacobian矩阵和Hessian矩阵 雅克比与海森雅可比矩阵(描述的一阶导数矩阵).. 把它理解为一阶gradient就...
2020-05-03 11:36:23
229
翻译 Benders Decomposition vs Danzig-Wolf Decomposition
本文记录了一些对Benders (B)和Danzig-Wolf(DW) decomposition 的一些初步理解以及两者的使用场景与对比。来源:Jacek Gondzio,https://www.researchgate.net/post/Can_anyone_state_the_difference_or_pros_cons_of_benders_decomposition_vs_...
2020-05-01 21:21:19
847
原创 Brief Intro of Deep Learning【李宏毅课程笔记-待完成】
李宏毅2006, Restricted Boltzmann Machine. Complex. Used to initialize multi-layer perceptron (1980), to be called Deep LearningNetwork -> function setDeep -> many hidden layers2015, Residual N...
2020-04-26 16:59:19
138
原创 一些Java编程规约
使用java.util.Objects类中的方法进行对象间操作,如equals。这样可以避免空引用的异常。 Integer i=... 在128~-127之间的值来自于cache。这一范围是可更改的。然而Long类型的这一范围是不可更改的! 所有POJO类属性和RPC方法调用参数及返回值使用包装类,局部变量使用基本类型。包装类的null值表示了额外的信息。 Object.clone()是浅拷...
2020-04-26 16:56:57
129
原创 Git 项目管理流程与协作方式
近期随着团队规模的扩大以及业务需求的逐渐增长,我花时间思考了团队的代码协作方式,过程中有些收获跟大家分享一下。首先推荐几篇文章:阮一峰的博客介绍了比较主流的集中Git工作流程,再加上这里提到的SVN时代的单主干模型,大家应该有个比较全面的认识了。那么这么多的方式应该如何选择呢?我目前的理解是:单主干模式主干开发,tag或分支发布。这个应该不用考虑了,小项目,两三个人应该还可以玩玩,否则可...
2020-03-28 12:32:53
366
原创 Stochastic Optimization: Casual Notes
Currently learning stochastic optimization (SO) theory, I will note important content here.Multi-stage vs Multi-periodStage: is defined according to decisions madePeriod: is defined according to t...
2020-02-22 08:05:20
361
课程作业- 实验报告提交批阅系统(PHP).
2010-05-02
Qt mysql driver
2013-02-25
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人