首先,我们看看前序、中序、后序遍历的特性:
前序遍历:
1.访问根节点
2.前序遍历左子树
3.前序遍历右子树
中序遍历:
1.中序遍历左子树
2.访问根节点
3.中序遍历右子树
后序遍历:
1.后序遍历左子树
2.后序遍历右子树
3.访问根节点
已知前序、中序遍历,求后序遍历
例:
前序遍历: GDAFEMHZ
中序遍历: ADEFGHMZ
画树求法:
第一步,根据前序遍历的特点,我们知道根结点为G
第二步,观察中序遍历ADEFGHMZ。其中root节点G左侧的ADEF必然是root的左子树,G右侧的HMZ必然是root的右子树。
第三步,观察左子树ADEF,左子树的中的根节点必然是大树的root的leftchild。在前序遍历中,大树的root的leftchild位于root之后,所以左子树的根节点为D。
第四步,同样的道理,root的右子树节点HMZ中的根节点也可以通过前序遍历求得。在前序遍历中,一定是先把root和root的所有左子树节点遍历完之后才会遍历右子树,并且遍历的左子树的第一个节点就是左子树的根节点。同理,遍历的右子树的第一个节点就是右子树的根节点。
第五步,观察发现,上面的过程是递归的。先找到当前树的根节点,然后划分为左子树,右子树,然后进入左子树重复上面的过程,然后进入右子树重复上面的过程。最后就可以还原一棵树了。该步递归的过程可以简洁表达如下:
1 确定根,确定左子树,确定右子树。
2 在左子树中递归。
3 在右子树中递归。
4 打印当前根。
那么,我们可以画出这个二叉树的形状:
那么,根据后序的遍历规则,我们可以知道,后序遍历顺序为:AEFDHZMG
编程求法:
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
typedef struct Treenode
{
char c;
struct Treenode *left;
struct Treenode *right;
}Node;
//通过前序和中序构建二叉树
Node* BuildTree(char *pre,char *in,int length)
{
if(length == 0)
return NULL;
Node *node = new Node;
node->c = pre[0];
int rootindex = -1;
for(int i = 0;i < length;i++)
{
if(in[i] == pre[0])
{
rootindex = i;
break;
}
}
node->left = BuildTree(pre+1,in,rootindex);//left
node->right = BuildTree(pre+1+rootindex,in+1+rootindex,length-rootindex-1);//right
return node;
}
//后序遍历
void print(Node *root)
{
if(root != NULL)
{
print(root->left);
print(root->right);
printf("%c",root->c);
}
}
int main()
{
char pre[26],in[26];
while(scanf("%s",pre) != EOF)
{
scanf("%s",in);
Node *root = BuildTree(pre,in,strlen(pre)) ;
print(root);
printf("\n");
}
}