二叉树前序、中序、后序遍历相互求法

首先,我们看看前序、中序、后序遍历的特性: 
前序遍历: 
    1.访问根节点 
    2.前序遍历左子树 
    3.前序遍历右子树 
中序遍历: 
    1.中序遍历左子树 
    2.访问根节点 
    3.中序遍历右子树 
后序遍历: 
    1.后序遍历左子树 
    2.后序遍历右子树 
    3.访问根节点

已知前序、中序遍历,求后序遍历

例:

前序遍历:         GDAFEMHZ

中序遍历:         ADEFGHMZ

画树求法:
第一步,根据前序遍历的特点,我们知道根结点为G

第二步,观察中序遍历ADEFGHMZ。其中root节点G左侧的ADEF必然是root的左子树,G右侧的HMZ必然是root的右子树。

 第三步,观察左子树ADEF,左子树的中的根节点必然是大树的root的leftchild。在前序遍历中,大树的root的leftchild位于root之后,所以左子树的根节点为D。

第四步,同样的道理,root的右子树节点HMZ中的根节点也可以通过前序遍历求得。在前序遍历中,一定是先把root和root的所有左子树节点遍历完之后才会遍历右子树,并且遍历的左子树的第一个节点就是左子树的根节点。同理,遍历的右子树的第一个节点就是右子树的根节点。

第五步,观察发现,上面的过程是递归的。先找到当前树的根节点,然后划分为左子树,右子树,然后进入左子树重复上面的过程,然后进入右子树重复上面的过程。最后就可以还原一棵树了。该步递归的过程可以简洁表达如下:

1 确定根,确定左子树,确定右子树。

2 在左子树中递归。

3 在右子树中递归。

4 打印当前根。

那么,我们可以画出这个二叉树的形状:

那么,根据后序的遍历规则,我们可以知道,后序遍历顺序为:AEFDHZMG

编程求法:

#include<stdio.h>
#include<stdlib.h>
#include<string.h>

typedef struct Treenode
{
	char c;
	struct Treenode *left;
	struct Treenode *right;
}Node;

//通过前序和中序构建二叉树 
Node* BuildTree(char *pre,char *in,int length)
{
	if(length == 0)
		return NULL;
	Node *node = new Node;
	node->c = pre[0];
	int rootindex = -1;
	for(int i = 0;i < length;i++)
	{
		if(in[i] == pre[0])
		{
			rootindex = i;
			break;
		}
	}
	node->left = BuildTree(pre+1,in,rootindex);//left 
	node->right = BuildTree(pre+1+rootindex,in+1+rootindex,length-rootindex-1);//right
	return node;
}

//后序遍历 
void print(Node *root)
{
	if(root != NULL)
	{
		print(root->left);
		print(root->right);
		printf("%c",root->c);
	}
}
int main()
{
	char pre[26],in[26];
	while(scanf("%s",pre) != EOF)
	{
		scanf("%s",in);
		Node *root = BuildTree(pre,in,strlen(pre)) ;
		print(root);
		printf("\n");
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值