分布式唯一ID生成方案

全局唯一ID使用场景

  • 分布式系统设计时,数据分片场景下,通常需要一个全局唯一id;
  • 在消息系统中需要消息唯一ID标识来防止消息重复;
  • 多系统打通需要一个全局唯一标识 (如集团各业务线面对不同用户,需要一个全局用户id)。

如何生成一个全局唯一id?

UUID

概述

  • Universally Unique Identifier 是自由软件基金会组织制定的唯一辨识ID生成标准,大多数系统已实现,如微软的GUID实现。

生成格式如:3d422567-f034-4ab4-b98f-a34fd263d0de

实现方案

  • /usr/bin/uuidgen
  • github.com/google/uuid

优缺点

  • 优点:
    • 性能高,本地生成,无依赖
  • 缺点:
    • 生成格式太长,不适合做数据库主键id;
    • 基于mac地址生成算法可能导致mac泄露

Sequence表

概述

  • 使用DB统一维护一张(N张)发号表, 使用主键自增值生成唯一ID。

生成格式如:1,2,3,4,5…(递增数字)

实现方案

  • 表结构
id int(11) NOT NULL AUTO_INCREMENT COMMENT '自增id'
stub varchar(10) NOT NULL DEFAULT '' COMMENT '存根'
  • 获取
BEGIN;
insert into sequence (stub) value ('x');
select LAST_INSERT_ID();
COMMIT;

优缺点

  • 优点
    • ID呈单调自增趋势,满足一些场景如搜索排序;
  • 缺点
    • 依赖DB,有单节点DB性能瓶颈;
    • 如果DB采用主从架构,主从切换时可能会重复发号;
    • 生成号码存在递增规律,如可推断出一天的新增订单量,两天在同一时间点分别下单,然后根据订单号相减

优化方案

  • 提前从数据库读取一段放到代理服务器内存中,可减少数据库IO操作,提高性能

SnowFlake 雪花算法

概述

  • Twitter实现的算法,使用时间戳+机器分配标识+自增序列组成64位数字ID。

生成格式如:1292755860950487050

实现方案

  • github.com/sony/sonyflake

优缺点

  • 优点
    • 使用时间在高位,ID呈现递增趋势,满足一些场景如搜索排序;
    • 不依赖其他组件,易于部署维护。
  • 缺点
    • 依赖机器时钟,因时钟回拨问题会导致发号重复或不可用,代码实现时采用循环等待下一时钟的方式,可能会有性能问题。

优化方案

  • 多节点部署时,可使用zookeeper做节点分布式协调 一致性管理,当出现时钟回拨可由zk来同步时间或摘除节点。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值