-
题目描述:
-
从上往下打印出二叉树的每个节点,同层节点从左至右打印。
-
输入:
-
输入可能包含多个测试样例,输入以EOF结束。
对于每个测试案例,输入的第一行一个整数n(1<=n<=1000, :n代表将要输入的二叉树元素的个数(节点从1开始编号)。接下来一行有n个数字,代表第i个二叉树节点的元素的值。接下来有n行,每行有一个字母Ci。
Ci=’d’表示第i个节点有两子孩子,紧接着是左孩子编号和右孩子编号。
Ci=’l’表示第i个节点有一个左孩子,紧接着是左孩子的编号。
Ci=’r’表示第i个节点有一个右孩子,紧接着是右孩子的编号。
Ci=’z’表示第i个节点没有子孩子。
-
输出:
-
对应每个测试案例,
按照从上之下,从左至右打印出二叉树节点的值。
代码:构建树之后宽度优先遍历即可
#include<stdio.h>
#include<stdlib.h>
typedef struct tree
{
int data;
struct tree *left;
struct tree *right;
}Node;
Node *Atree[1099];
void create(Node *node[],int a[], int n)
{
char type;
int left,right;
for(int i = 1; i <= n; i++)
{
node[i]->data = a[i];
scanf("\n%c",&type);
if(type == 'd')
{
scanf("%d %d",&left,&right);
node[i]->left = node[left];
node[i]->right = node[right];
}
else if(type == 'l')
{
scanf("%d",&left);
node[i]->left = node[left];
node[i]->right = NULL;
}
else if(type == 'r')
{
scanf("%d",&right);
node[i]->left = NULL;
node[i]->right = node[right];
}
else if(type == 'z')
{
node[i]->left = NULL;
node[i]->right = NULL;
}
}
}
//宽度优先遍历 :采用队列的方式
int flag = 0;
void print(Node *tree)
{
Node *a[1099];
int front = -1 ,rear = -1;
if(tree != NULL)
{
rear++;
a[rear] = tree;
while(front != rear)
{
front++;
if(flag == 0)
{
printf("%d",a[front]->data);//将父节点出队
flag = 1;
}
else
printf(" %d",a[front]->data);
if(a[front]->left != NULL)
{
rear++;
a[rear] = a[front]->left;//将左孩子进队
}
if(a[front]->right != NULL)
{
rear++;
a[rear] = a[front]->right;//将右孩子进队
}
}
}
}
int main()
{
int n;
while(scanf("%d",&n) != EOF)
{
int a[n + 1];
for(int i = 1; i <= n; i++)
Atree[i] = new Node;
for(int i = 1; i <= n; i++)
scanf("%d",&a[i]);
create(Atree,a,n);
print(Atree[1]);
printf("\n");
//清空
for(int i = 1;i <= n;i++)
{
delete Atree[i];
Atree[i]=NULL;
}
}
}