There are two sorted arrays A and B of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).
思路一:合并两个递增数组,然后求中位数
1)线性合并,时间复杂度O(m+n)
public class Solution_2
{
public static double findMedianSortedArrays(int A[], int B[])
{
int m = A.length;
int n = B.length;
int[] tmp = new int[m + n];
int i = 0, j = 0, k = 0;
while(i < m && j < n)
{
if(A[i] < B[j])
tmp[k++] = A[i++];
else
tmp[k++] = B[j++];
}
while(i < m)
tmp[k++] = A[i++];
while(j < n)
tmp[k++] = B[j++];
if(k % 2 == 0)
return (tmp[(k-1)/2] + tmp[k/2]) / 2.0;
else
return tmp[k / 2];
}
public static void main(String[] args)
{
// TODO Auto-generated method stub
int[] a = {1,3,5};
int[] b = {2,4,6,8,10};
System.out.println(findMedianSortedArrays(a, b));
}
}
2)通过二分插入将数组B插入数组A中,时间复杂度O(mlogn)
思路二:通过求第K最小值来求中位数。
注:
该方法的核心是将原问题转变成一个寻找第k小数的问题(假设两个原序列升序排列),这样中位数实际上是第(m+n)/2小的数。所以只要解决了第k小数的问题,原问题也得以解决。
首先假设数组A和B的元素个数都大于k/2,我们比较A[k/2-1]和B[k/2-1]两个元素,这两个元素分别表示A的第k/2小的元素和B的第k/2小的元素。这两个元素比较共有三种情况:>、<和=。如果A[k/2-1]<B[k/2-1],这表示A[0]到A[k/2-1]的元素都在A和B合并之后的前k小的元素中。换句话说,A[k/2-1]不可能大于两数组合并之后的第k小值,所以我们可以将其抛弃。
证明也很简单,可以采用反证法。假设A[k/2-1]大于合并之后的第k小值,我们不妨假定其为第(k+1)小值。由于A[k/2-1]小于B[k/2-1],所以B[k/2-1]至少是第(k+2)小值。但实际上,在A中至多存在k/2-1个元素小于A[k/2-1],B中也至多存在k/2-1个元素小于A[k/2-1],所以小于A[k/2-1]的元素个数至多有k/2+ k/2-2,小于k,这与A[k/2-1]是第(k+1)的数矛盾。
当A[k/2-1]>B[k/2-1]时存在类似的结论。
当A[k/2-1]=B[k/2-1]时,我们已经找到了第k小的数,也即这个相等的元素,我们将其记为m。由于在A和B中分别有k/2-1个元素小于m,所以m即是第k小的数。(这里可能有人会有疑问,如果k为奇数,则m不是中位数。这里是进行了理想化考虑,在实际代码中略有不同,是先求k/2,然后利用k-k/2获得另一个数。)
通过上面的分析,我们即可以采用递归的方式实现寻找第k小的数。此外我们还需要考虑几个边界条件:
- 如果A或者B为空,则直接返回B[k-1]或者A[k-1];
- 如果k为1,我们只需要返回A[0]和B[0]中的较小值;
- 如果A[k/2-1]=B[k/2-1],返回其中一个;
代码:
public class Solution_2_2 {
public double findMedianSortedArrays(int A[], int B[]) {
int k = A.length + B.length;
return k % 2 == 0 ? (findK(A, 0, A.length - 1, B, 0, B.length - 1, k/2 + 1) +
findK(A, 0, A.length - 1, B, 0, B.length - 1, k/2)) / 2
: findK(A, 0, A.length - 1, B, 0, B.length - 1, k/2 + 1);
}
//返回两个数组中第k大的元素。
public double findK(int a[], int s1, int e1, int b[], int s2, int e2, int k) {
int m = e1 - s1 + 1;
int n = e2 - s2 + 1;
if (m > n) return findK(b, s2, e2, a, s1, e1, k); //a的长度比b的小。
if (s1 > e1) return b[s2 + k - 1];
if (s2 > e2) return a[s1 + k - 1];
if (k == 1) return Math.min(a[s1], b[s2]);
int midA = Math.min(k/2, m), midB = k - midA;
//如果a的第midA大的元素比b的第midB大的元素小,
//那么删掉a的前midA个元素,在剩余的数中找第k-midA大的。
if (a[s1 + midA - 1] < b[s2 + midB - 1])
return findK(a, s1 + midA, e1, b, s2, e2, k - midA);
else if (a[s1 + midA - 1] > b[s2 + midB - 1])
return findK(a, s1, e1, b, s2 + midB, e2, k - midB);
else
return a[s1 + midA - 1];
}
}