Given an unsorted integer array, find the first missing positive integer.
For example,
Given [1,2,0]
return 3
,
and [3,4,-1,1]
return 2
.
Your algorithm should run in O(n) time and uses constant space.
代码一:由于算法的时间复杂度是O(n),故考虑到哈系表,另外创建的哈系表,虽然AC了,但是还是没达到题目要求constant space
public static int firstMissingPositive(int[] A)
{
if(A.length <= 0)
return 1;
int max = A[0], result;
for(int i = 1; i < A.length; i++)
if(A[i] > max)
max = A[i];
int[] B = new int[max + 1];
for(int i = 0; i < A.length; i++)
{
if(A[i] > 0)
B[A[i]] = 1;
}
int j;
for(j = 1; j < B.length; j++)
{
if(B[j] != 1)
break;
}
result = j;
return result;
}
代码二:利用数组本身作为哈系表,上面创建另外的哈系表,主要是为了不改变原数组的数据。
正好这个题目中处理的是1到n的数据,提供了一个将输入的数组同时用作hash表的可能性。
于是算法就是:
- 第一遍扫描排除所有非正的数,将它们设为一个无关紧要的正数(n+2),因为n+2不可能是答案
- 第二遍扫描,将数组作为hash表来使用,用数的正负来表示一个数是否存在在A[]中。
当遇到A[i],而A[i]属于区间[1,n],就把A中位于此位置A[i] – 1的数置翻转为负数。
所以我们取一个A[i]的时候,要取它的abs,因为如果它是负数的话,通过步骤一之后,只可能是我们主动设置成负数的 - 第三遍扫描,如果遇到一个A[i]是正数,说明i+1这个数没有出现在A[]中,只需要返回即可。
- 上一步没返回,说明1到n都在,那就返回n+1
public static int firstMissingPositive2(int[] A) { int len = A.length; if(len <= 0) return 1; for(int i = 0; i < len; i++) { if(A[i] <= 0) A[i] = len + 2; } for(int i = 0; i < len; i++) { int tmp = Math.abs(A[i]); if(tmp <= len) A[tmp - 1] = - Math.abs(A[tmp - 1]); } for(int i = 0; i < len; i++) if(A[i] > 0) return i + 1; return len + 1; }