Python数据挖掘实战—1691人已学习
课程介绍
Python数据挖掘系列课程基于真实数据集进行案例实战,使用Python数据科学库从数据预处理开始一步步进行数据建模。对于每个案例首先进行流程解读与数据分析,建立特征工程,详细解读其中每一步原理与应用。
课程收益
掌握Python数据挖掘流程,熟练使用Python库进行建模分析。
讲师介绍
唐宇迪 更多讲师课程
计算机博士,专注于机器学习与计算机视觉领域,深度学习领域一线实战讲师。在图像识别领域有着丰富经验,实现过包括人脸识别,物体识别,关键点检测等多种应用的新算法。 参与多个国家级计算机视觉项目,多年数据领域培训经验,丰富的教学讲解经验,出品多套机器学习与深度学习系列课程,课程生动形象,风格通俗易懂。
课程大纲
第1章:泰坦尼克号获救预测
1. 数据挖掘任务流程 12:36
2. 数据介绍(数据代码下载--->) 8:36
3. Python兵器库介绍 9:19
4. sklearn库介绍 11:33
5. 数据读取与统计分析 9:43
6. 性别特征分析 10:48
7. 船舱等级特征分析 8:35
8. 缺失值问题 11:02
9. 年龄特征缺失值填充与分析 14:32
10. 登船地点特征分析 11:54
11. 家庭特征分析 11:03
12. 特征相关性 9:16
13. 构建特征 18:25
14. 机器学习算法概述 10:48
15. 交叉验证 9:11
16. 多种机器学习算法模型效果 17:29
17. 集成模块 12:47
18. 特征重要性衡量 7:09
19. 总结与特征预处理 15:35
第2章:用户画像
1. 用户画像概述 13:26
2. 如何建立用户画像 13:47
3. 用户搜索数据介绍 5:14
4. 任务概述与方案 10:46
5. 构造词向量特征 11:06
6. 构造输入特征 13:23
7. 建立预测模型 19:33
第3章:Xgboost实战
1. Xgboost算法概述 11:35
2. Xgboost模型构造 12:10
3. Xgboost建模衡量标准 12:07
4. Xgboost安装 6:26
5. 保险赔偿任务概述 13:06
6. Xgboost参数定义 9:54
7. 基础模型定义 8:16
8. 树结构对结果的影响 12:37
9. 学习率与采样对结果的影响 13:01
第4章:京东购买意向预测
1. 项目与数据介绍 20:18
2. 数据挖掘流程 19:17
3. 数据检查 12:01
4. 构建用户特征表单 18:33
5. 构建商品特征表单 9:42
6. 数据探索概述 9:23
7. 购买因素分析 10:46
8. 特征工程 15:38
9. 基本特征构造 17:47
10. 行为特征 10:45
11. 累积行为特征 11:23
12. Xgboost模型 6:32
第5章:Kaggle数据科学调查
1. kaggle数据科学调查介绍 11:18
2. 基本情况可视化展示 19:36
3. 工资情况 11:33
4. 技能使用情况 16:32
5. 数据集与平台 14:21
6. python和r哪家强 15:58
7. 调查总结 16:16
第6章:房价预测
1. 房价预测任务概述 12:21
2. 离散形数据 9:25
3. 数据对数变换 10:43
4. 缺失值处理与box-cox变换 12:51
5. 模型预测 10:58
第7章:论文与BenchMark的意义
1. 1-HTTP检测任务与数据挖掘的核心 11:13
2. 2-论文的重要程度 10:00
3. 3-BenchMark概述 6:23
4. 4-BenchMark的作用 13:31
第8章:Python实现音乐推荐系统
1. 音乐推荐任务概述 17:35
2. 数据集整合 8:19
3. 基于物品的协同过滤 13:18
4. 物品相似度计算与推荐 19:14
5. SVD矩阵分解 16:54
6. 基于矩阵分解的音乐推荐 14:44
第9章:fbprophet时间序列预测
1. fbprophet股价预测任务概述 13:29
2. 时间序列分析 16:44
3. fbprophet时间序列预测实例 19:23
4. 亚马逊股价趋势 15:07
5. 突变点调参 18:01
第10章:用电敏感客户分类
1. 任务与解决框架概述 12:31
2. 特征工程分析与特征提取 20:34
3. 离散数据处理 17:12
4. 统计与文本特征 10:36
5. 文本特征构建 20:41
6. 构建低敏用户模型 12:28
7. 高敏模型概述 7:20
第11章:数据特征
1. 基本数值特征 11:14
2. 常用特征构造手段 13:53
3. 时间特征处理 13:04
4. 文本特征处理 20:24
5. 构造文本向量 11:45
6. 词向量特征 13:55
7. 计算机眼中的图像 5:46
大家可以点击【 查看详情】查看我的课程
课程介绍
Python数据挖掘系列课程基于真实数据集进行案例实战,使用Python数据科学库从数据预处理开始一步步进行数据建模。对于每个案例首先进行流程解读与数据分析,建立特征工程,详细解读其中每一步原理与应用。
课程收益
掌握Python数据挖掘流程,熟练使用Python库进行建模分析。
讲师介绍
唐宇迪 更多讲师课程
计算机博士,专注于机器学习与计算机视觉领域,深度学习领域一线实战讲师。在图像识别领域有着丰富经验,实现过包括人脸识别,物体识别,关键点检测等多种应用的新算法。 参与多个国家级计算机视觉项目,多年数据领域培训经验,丰富的教学讲解经验,出品多套机器学习与深度学习系列课程,课程生动形象,风格通俗易懂。
课程大纲
第1章:泰坦尼克号获救预测
1. 数据挖掘任务流程 12:36
2. 数据介绍(数据代码下载--->) 8:36
3. Python兵器库介绍 9:19
4. sklearn库介绍 11:33
5. 数据读取与统计分析 9:43
6. 性别特征分析 10:48
7. 船舱等级特征分析 8:35
8. 缺失值问题 11:02
9. 年龄特征缺失值填充与分析 14:32
10. 登船地点特征分析 11:54
11. 家庭特征分析 11:03
12. 特征相关性 9:16
13. 构建特征 18:25
14. 机器学习算法概述 10:48
15. 交叉验证 9:11
16. 多种机器学习算法模型效果 17:29
17. 集成模块 12:47
18. 特征重要性衡量 7:09
19. 总结与特征预处理 15:35
第2章:用户画像
1. 用户画像概述 13:26
2. 如何建立用户画像 13:47
3. 用户搜索数据介绍 5:14
4. 任务概述与方案 10:46
5. 构造词向量特征 11:06
6. 构造输入特征 13:23
7. 建立预测模型 19:33
第3章:Xgboost实战
1. Xgboost算法概述 11:35
2. Xgboost模型构造 12:10
3. Xgboost建模衡量标准 12:07
4. Xgboost安装 6:26
5. 保险赔偿任务概述 13:06
6. Xgboost参数定义 9:54
7. 基础模型定义 8:16
8. 树结构对结果的影响 12:37
9. 学习率与采样对结果的影响 13:01
第4章:京东购买意向预测
1. 项目与数据介绍 20:18
2. 数据挖掘流程 19:17
3. 数据检查 12:01
4. 构建用户特征表单 18:33
5. 构建商品特征表单 9:42
6. 数据探索概述 9:23
7. 购买因素分析 10:46
8. 特征工程 15:38
9. 基本特征构造 17:47
10. 行为特征 10:45
11. 累积行为特征 11:23
12. Xgboost模型 6:32
第5章:Kaggle数据科学调查
1. kaggle数据科学调查介绍 11:18
2. 基本情况可视化展示 19:36
3. 工资情况 11:33
4. 技能使用情况 16:32
5. 数据集与平台 14:21
6. python和r哪家强 15:58
7. 调查总结 16:16
第6章:房价预测
1. 房价预测任务概述 12:21
2. 离散形数据 9:25
3. 数据对数变换 10:43
4. 缺失值处理与box-cox变换 12:51
5. 模型预测 10:58
第7章:论文与BenchMark的意义
1. 1-HTTP检测任务与数据挖掘的核心 11:13
2. 2-论文的重要程度 10:00
3. 3-BenchMark概述 6:23
4. 4-BenchMark的作用 13:31
第8章:Python实现音乐推荐系统
1. 音乐推荐任务概述 17:35
2. 数据集整合 8:19
3. 基于物品的协同过滤 13:18
4. 物品相似度计算与推荐 19:14
5. SVD矩阵分解 16:54
6. 基于矩阵分解的音乐推荐 14:44
第9章:fbprophet时间序列预测
1. fbprophet股价预测任务概述 13:29
2. 时间序列分析 16:44
3. fbprophet时间序列预测实例 19:23
4. 亚马逊股价趋势 15:07
5. 突变点调参 18:01
第10章:用电敏感客户分类
1. 任务与解决框架概述 12:31
2. 特征工程分析与特征提取 20:34
3. 离散数据处理 17:12
4. 统计与文本特征 10:36
5. 文本特征构建 20:41
6. 构建低敏用户模型 12:28
7. 高敏模型概述 7:20
第11章:数据特征
1. 基本数值特征 11:14
2. 常用特征构造手段 13:53
3. 时间特征处理 13:04
4. 文本特征处理 20:24
5. 构造文本向量 11:45
6. 词向量特征 13:55
7. 计算机眼中的图像 5:46
大家可以点击【 查看详情】查看我的课程