python数据分析与机器学习实战—79430人已学习
课程介绍
课程风格通俗易懂,真实案例实战。精心挑选真实的数据集为案例,通过python数据科学库numpy,pandas,matplot结合机器学习库scikit-
learn完成一些列的机器学习案例。课程以实战为基础,所有课时都结合代码演示如何使用这些python库来完成一个真实的数据案例。算法与项目相结合,选择经典kaggle项目,从数据预处理开始一步步代码实战带大家入门机器学习。
学习收益: 1.掌握Python数据科学工具包,包括矩阵数据处理与可视化展示。 2.掌握机器学习算法原理推导,从数学上理解算法是怎么来的以及其中涉及的细节。
3.掌握每一个算法所涉及的参数,详解其中每一步对结果的影响。 4.熟练使用Python进行建模实战,基于真实数据集展开分析,一步步完成整个建模实战任务。
课程收益
课程目标:零基础快速掌握python数据分析与机器学习算法实战,快速入门python最流行的数据分析库numpy,pandas,matplotlib。对于繁琐的机器学习算法,先从原理上进行推导,以算法流程为主结合实际案例完成算法代码,使用scikit-
learn机器学习库完成快速建立模型,评估以及预测。结合经典kaggle案例,从数据预处理开始一步步完成整个项目,使大家对如何应用python库完成实际的项目有完整的经验与概念。
讲师介绍
唐宇迪 更多讲师课程
计算机博士,专注于机器学习与计算机视觉领域,深度学习领域一线实战讲师。在图像识别领域有着丰富经验,实现过包括人脸识别,物体识别,关键点检测等多种应用的新算法。
参与多个国家级计算机视觉项目,多年数据领域培训经验,丰富的教学讲解经验,出品多套机器学习与深度学习系列课程,课程生动形象,风格通俗易懂。
课程大纲
第1章:人工智能入学指南
- AI时代首选Python 9:20
- Python我该怎么学 4:21
- 人工智能的核心-机器学习 10:34
- 机器学习怎么学? 8:36
- 算法推导与案例 8:18
第2章:Python科学计算库-Numpy - 使用Anaconda安装python环境 13:10
- Numpy基础操作(课程所有PPT,数据,代码下载) 10:32
- Numpy数组结构 10:41
- Numpy矩阵基础 5:55
- Numpy常用函数 12:01
- Numpy矩阵操作 10:18
- 复制操作对比 10:49
第3章:Python数据分析处理库-Pandas - Pandas数据读取 11:50
- Pandas索引与计算 10:26
- Pandas数据预处理实例 13:01
- Pandas常用预处理方法 11:11
- Pandas自定义函数 7:44
- Series基本结构 12:29
第4章:Python可视化库-Matplotlib - Matplotlib完成简易折线图 8:24