Problem L

本文介绍了一种计算整数根的有效方法,用于解决密码学中的特定问题。通过使用C++中的pow()函数,文章提供了一个简洁的解决方案来找出p的n次方根对应的整数k。
Problem Description
Current work in cryptography involves (among other things) large prime numbers and computing powers of numbers among these primes. Work in this area has resulted in the practical use of results from number theory and other branches of mathematics once considered to be only of theoretical interest.
This problem involves the efficient computation of integer roots of numbers.
Given an integer n>=1 and an integer p>= 1 you have to write a program that determines the n th positive root of p. In this problem, given such integers n and p, p will always be of the form k to the nth. power, for an integer k (this integer is what your program must find).
 

Input
The input consists of a sequence of integer pairs n and p with each integer on a line by itself. For all such pairs 1<=n<= 200, 1<=p<10<sup>101</sup> and there exists an integer k, 1<=k<=10<sup>9</sup> such that k<sup>n</sup> = p.
 

Output
For each integer pair n and p the value k should be printed, i.e., the number k such that k n =p.
 

Sample Input
2 16 3 27 7 4357186184021382204544
 

Sample Output
4
3
1234

简单题意:
  密码学和数论是一个令人感兴趣的研究。现在要求编写一个程序,给出n和p,然后求出p的n次方根。
解题思路形成过程:
  在 我的C++函数库中,并没有开n次方根的函数。但是有一个求n次方的函数,那就是pow().所以我想,开n次方根也就是求p的1/n次方。所以程序就了然于胸。
感想:
  在考虑任何问题是,都要用已有知识求探求未知,有时候,反其道而行也是一种不错的方式。
AC代码:
#include <iostream>
#include <cmath>
#include <algorithm>
using namespace std;
int main()
{
    double n,p,k;
    while(cin>>n>>p)
    {
       
        k=pow(p,1.0/n);
        cout<<k<<endl;
    }
    return 0;
}
### 对偶问题在优化中的概念 对偶问题是数学优化理论中的一个重要概念,在许多实际应用中具有重要意义。其核心思想在于,任何优化问题都可以通过转换视角来表示为两个相互关联的问题:原始问题(primal problem)和对偶问题(dual problem)。这种关系不仅提供了新的求解途径,还能够帮助分析原问题的性质。 #### 原始问题与对偶问题的关系 在一个标准形式的凸优化问题中,目标是最小化某个函数 \( f(x) \),其中 \( x \in \mathbb{R}^n \) 是决策变量,并受到一组约束条件的影响。通过对该问题引入拉格朗日乘子并构建拉格朗日函数,可以得到对应的对偶问题。具体而言: \[ L(x, \lambda) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x), \] 这里 \( L(x, \lambda) \) 表示拉格朗日函数,\( \lambda_i \geq 0 \) 是与不等式约束 \( g_i(x) \leq 0 \) 相关的拉格朗日乘子[^1]。 随后定义对偶函数为: \[ g(\lambda) = \inf_x L(x, \lambda). \] 最终形成的对偶问题即为最大化此对偶函数: \[ \max_\lambda g(\lambda), \quad \text{s.t. } \lambda \geq 0. \] 这种方法的核心优势之一是对偶问题通常更易于处理,尤其是在涉及复杂约束的情况下。 #### 平滑化的改进策略 为了进一步提升算法性能,可以通过向拉格朗日项添加一个关于 \( \lambda \) 的二次正则化项实现平滑效果。这一技术被称为“增加不等式约束使 \( \lambda \) 变化更加平稳”,从而改善数值稳定性以及收敛速度[^2]。 以下是基于上述思路的一个简单伪代码框架展示如何调整参数以促进光滑过渡: ```python def optimize_with_smoothing(f, constraints, initial_lambda): lambda_ = initial_lambda while not converged: # 更新拉格朗日乘数时加入二次惩罚项 gradient_update = compute_gradient(lambda_) quadratic_penalty = alpha * (lambda_ ** 2) new_lambda = project_to_nonnegative(lambda_ - learning_rate * (gradient_update + quadratic_penalty)) return lambda_ ``` 在此过程中,`alpha` 控制着正则化强度,而 `project_to_nonnegative` 函数用于确保更新后的 \( \lambda \) 非负性满足要求。 #### 关于带宽线性优化的研究进展 近年来,针对在线学习环境下的带宽线性优化领域也取得了显著成果。例如,《Competing in the Dark: An Efficient Algorithm for Bandit Linear Optimization》一文中提出了高效的随机梯度下降变体,能够在未知损失函数分布的前提下达到接近最优的表现水平[^3]。 这些研究方向表明即使面对高度不确定性的场景下,合理利用对偶结构仍然可以帮助我们设计出强大且实用的解决方案。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值