【同等学力】10-小球染色

【同等学力】01-逻辑符号表达-CSDN博客

【同等学力】02-二项式定理-CSDN博客

【同等学力】03-错位排列问题-CSDN博客

【同等学力】04-排列组合-CSDN博客

【同等学力】05-图论-CSDN博客

【同等学力】06-个数计算-CSDN博客

【同等学力】07-谓词计算-CSDN博客

【同等学力】08-集合证明-CSDN博客

【同等学力】09-集合子集-CSDN博客

【同等学力】10-小球染色-CSDN博客

 1、有t个球排成一排,其中t≥3.用红,橙、黄,绿、蓝五种颜色给这t个球染色,每一个球只能染一种颜色,如果要求染红、橙、黄色的球至少出现一个,问有多少种不同的染法?【2017】 💫

指数型母函数求解

容斥原理求解

2、一个大正方形是由四个相同的小正方形构成,如图1所示,用黑白两种颜色对4个小正方形着色,如果经过某种旋转,颜色能完全吻合的方案认为是相同的,则有______种不同的方案。【2009】 💫

答案:6 

为了解决这个问题,我们需要考虑大正方形的旋转对称性。大正方形可以旋转0°、90°、180°和270°,这意味着有4种可能的旋转。我们将使用伯恩赛德引理来计算不同的着色方案数。

伯恩赛德引理指出,不同的着色方案数是每种旋转下固定的着色方案数的平均值。让我们分析每种旋转:

  1. 旋转0°(恒等旋转):

    • 所有16种可能的着色方案都是固定的,因为没有旋转。

    • 固定的着色方案数:2^4=16。

  2. 旋转90°和270°:

    • 为了使着色方案在90°或270°旋转下保持不变,所有四个小正方形必须是相同的颜色。

    • 固定的着色方案数:2(全部黑色或全部白色)。

  3. 旋转180°:

    • 为了使着色方案在180°旋转下保持不变,相对的小正方形必须是相同的颜色。

    • 固定的着色方案数:2^2=4(每对相对的小正方形可以是黑色或白色)。

现在,我们应用伯恩赛德引理:

不同的着色方案数=1​/4(旋转0°下的固定方案数+旋转90°下的固定方案数+旋转180°下的固定方案数+旋转270°下的固定方案数) 因此,不同的着色方案数是6​。

3、随意地把一个9×3棋盘的每个方格涂成红色或蓝色,求证:必有两行方格的涂色是一样的。【2008】 💫

4、【2013】💫 

 【2013】💫

5、【2005】💫

 

6、有r个正方形排成一行,今用红、黄、白、蓝四种颜色给这个r个正方形染色,每个正方形只能染一种颜色,如果要求染红、黄、白色的正方形分别至少出现一个,问有多少种不同的染法?【2005】💫

指数型母函数解答: 

 

容斥原理解答

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

源图客

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值