1、有t个球排成一排,其中t≥3.用红,橙、黄,绿、蓝五种颜色给这t个球染色,每一个球只能染一种颜色,如果要求染红、橙、黄色的球至少出现一个,问有多少种不同的染法?【2017】 💫
指数型母函数求解
容斥原理求解
2、一个大正方形是由四个相同的小正方形构成,如图1所示,用黑白两种颜色对4个小正方形着色,如果经过某种旋转,颜色能完全吻合的方案认为是相同的,则有______种不同的方案。【2009】 💫
答案:6
为了解决这个问题,我们需要考虑大正方形的旋转对称性。大正方形可以旋转0°、90°、180°和270°,这意味着有4种可能的旋转。我们将使用伯恩赛德引理来计算不同的着色方案数。
伯恩赛德引理指出,不同的着色方案数是每种旋转下固定的着色方案数的平均值。让我们分析每种旋转:
旋转0°(恒等旋转):
所有16种可能的着色方案都是固定的,因为没有旋转。
固定的着色方案数:2^4=16。
旋转90°和270°:
为了使着色方案在90°或270°旋转下保持不变,所有四个小正方形必须是相同的颜色。
固定的着色方案数:2(全部黑色或全部白色)。
旋转180°:
为了使着色方案在180°旋转下保持不变,相对的小正方形必须是相同的颜色。
固定的着色方案数:2^2=4(每对相对的小正方形可以是黑色或白色)。
现在,我们应用伯恩赛德引理:
不同的着色方案数=1/4(旋转0°下的固定方案数+旋转90°下的固定方案数+旋转180°下的固定方案数+旋转270°下的固定方案数)因此,不同的着色方案数是6。
3、随意地把一个9×3棋盘的每个方格涂成红色或蓝色,求证:必有两行方格的涂色是一样的。【2008】 💫
4、【2013】💫
【2013】💫
5、【2005】💫
6、有r个正方形排成一行,今用红、黄、白、蓝四种颜色给这个r个正方形染色,每个正方形只能染一种颜色,如果要求染红、黄、白色的正方形分别至少出现一个,问有多少种不同的染法?【2005】💫
指数型母函数解答:
容斥原理解答